wenzhilics / HomoGCL

"HomoGCL: Rethinking Homophily in Graph Contrastive Learning" in KDD'23
13 stars 2 forks source link

HomoGCL: Rethinking Homophily in Graph Contrastive Learning

Implementation of KDD'23 paper HomoGCL: Rethinking Homophily in Graph Contrastive Learning.

Requirements

This repository has been tested with the following packages:

Important Hyperparameters

Please refer to args.py for the full hyper-parameters.

How to Run

Pass the above parameters to main.py. For example:

# cora
python main.py --dataname cora --nclusters 10 --alpha 1 --epoch1 50 --mean --epoch2 1000
# citeseer
python main.py --dataname citeseer --nclusters 30 --alpha 1 --epoch1 40 --epoch2 500
# pubmed
python main.py --dataname pubmed --nclusters 10 --alpha 1 --epoch1 100 --epoch2 500
# photo
python main.py --dataname photo --nclusters 10 --alpha 1 --epoch1 50 --lr1 1e-4 --epoch2 5000 --lr2 1e-3 --proj_dim 64
# computer
python main.py --dataname comp --nclusters 30 --alpha 1 --epoch1 100 --lr1 1e-4 --epoch2 5000 --lr2 1e-3

Acknowledgements

The code is implemented based on CCA-SSG.

Citation

If you find this work is helpful to your research, please consider citing our paper:

@article{li2023homogcl,
  title={HomoGCL: Rethinking Homophily in Graph Contrastive Learning},
  author={Wen-Zhi Li and Chang-Dong Wang and Hui Xiong and Jian-Huang Lai},
  journal={arXiv preprint arXiv:2306.09614},
  year={2023}
}