whisk-ml / whisk

whisk is a data science project framework that makes collaboration, reproducibility, and deployment "just work".
https://docs.whisk-ml.org
MIT License
10 stars 0 forks source link

whisk: The easy-bake data science project framework

pypi PyPI - Python Version docs

whisk is an open-source data science project framework that makes collaboration, reproducibility, and deployment "just work". It combines a suite of lightweight tools with a logical and flexible project structure. Release your model to the world without a software engineer.

Whisk doesn't lock you into a particular ML framework or require you to learn yet another ML packaging API. Instead, it lets you leverage the large Python ecosystem by structuring your ML project in a Pythonic-way. Whisk does the structuring while you focus on the data science.

Read more about our beliefs.

Getting Started

Start by creating a project. Begin a terminal session and run the commands below. Note: We use demo as the project name in the examples below. If you use a different project name, be sure to replace demo with the name of your project.

$ pip install whisk
$ whisk create demo
$ cd demo
$ source venv/bin/activate

The commands above do the following:

To try out all of the features, continue the quick tour of whisk →.

Examples

The whisk-ml GitHub org contains example whisk projects. Check out these examples and clone them locally. Since whisk makes reproducibility "just work", in most cases you simply need to run whisk setup to use the models generated by the projects. Here are few examples to start with:

Beliefs

Contributing

Want to help build whisk? Check out our contributing documentation.

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template. The project template is heavily inspired by Cookiecutter Data Science.