This repository provides the official PyTorch implementation for the following paper:
StyleGANEX: StyleGAN-Based Manipulation Beyond Cropped Aligned Faces
Shuai Yang, Liming Jiang, Ziwei Liu and Chen Change Loy
In ICCV 2023.
Project Page | Paper | Supplementary Video
Abstract: Recent advances in face manipulation using StyleGAN have produced impressive results. However, StyleGAN is inherently limited to cropped aligned faces at a fixed image resolution it is pre-trained on. In this paper, we propose a simple and effective solution to this limitation by using dilated convolutions to rescale the receptive fields of shallow layers in StyleGAN, without altering any model parameters. This allows fixed-size small features at shallow layers to be extended into larger ones that can accommodate variable resolutions, making them more robust in characterizing unaligned faces. To enable real face inversion and manipulation, we introduce a corresponding encoder that provides the first-layer feature of the extended StyleGAN in addition to the latent style code. We validate the effectiveness of our method using unaligned face inputs of various resolutions in a diverse set of face manipulation tasks, including facial attribute editing, super-resolution, sketch/mask-to-face translation, and face toonification.
Features:
Clone this repo:
git clone https://github.com/williamyang1991/StyleGANEX.git
cd StyleGANEX
Dependencies:
We have tested on:
To help users get started, we provide a Jupyter notebook found in ./inference_playground.ipynb
that allows one to visualize the performance of StyleGANEX.
The notebook will download the necessary pretrained models and run inference on the images found in ./data/
.
We also provide a UI for testing StyleGANEX that is built with gradio. Running the following command in a terminal will launch the demo:
python app_gradio.py
This demo is also hosted on Hugging Face.
Pre-trained models can be downloaded from Google Drive, Baidu Cloud (access code: luck) or Hugging Face:
Task | Model | Description |
---|---|---|
Inversion | styleganex_inversion.pt | pre-trained model for StyleGANEX inversion |
Image translation | styleganex_sr32.pt | pre-trained model specially for 32x face super resolution |
styleganex_sr.pt | pre-trained model for 4x-48x face super resolution | |
styleganex_sketch2face.pt | pre-trained model for skech-to-face translation | |
styleganex_mask2face.pt | pre-trained model for parsing map-to-face translation | |
Video editing | styleganex_edit_hair.pt | pre-trained model for hair color editing on videos |
styleganex_edit_age.pt | pre-trained model for age editing on videos | |
styleganex_toonify_cartoon.pt | pre-trained Cartoon model for video face toonification | |
styleganex_toonify_arcane.pt | pre-trained Arcane model for video face toonification | |
styleganex_toonify_pixar.pt | pre-trained Pixar model for video face toonification | |
Supporting model | ||
faceparsing.pth | BiSeNet for face parsing from face-parsing.PyTorch |
The downloaded models are suggested to be put into ./pretrained_models/
We can embed a face image into the latent space of StyleGANEX to obtain its w+ latent code and the first-layer feature f with inversion.py
.
python inversion.py --ckpt STYLEGANEX_MODEL_PATH --data_path FACE_IMAGE_PATH
The results are saved in the folder ./output/
.
The results contain a reconstructed image FILE_NAME_inversion.jpg
and a FILE_NAME_inversion.pt
file.
You can obtain w+ latent code and the first-layer feature f by
latents = torch.load('./output/FILE_NAME_inversion.pt')
wplus_hat = latents['wplus'].to(device) # w+
f_hat = [latents['f'][0].to(device)] # f
The ./inference_playground.ipynb
provides some face editing examples based on wplus_hat
and f_hat
.
image_translation.py
supports face super-resolution, sketch-to-face translation and parsing map-to-face translation.
python image_translation.py --ckpt STYLEGANEX_MODEL_PATH --data_path FACE_INPUT_PATH
The results are saved in the folder ./output/
.
Additional notes to consider:
--parsing_model_ckpt
(default: pretrained_models/faceparsing.pth
): path to the pre-trained parsing model--resize_factor
(default: 32): super resolution resize factor
--number
(default: 4): output number of multi-modal translation (for sketch/mask-to-face translation task)--use_raw_data
(default: False):
./data/ILip77SbmOE.png
will be downsampled based on --resize_factor
. The downsampled image will be also saved in ./output/
../data/ILip77SbmOE.png
will be transformed into a parsing map. The parsing map and its visualization version will be also saved in ./output/
../data/ILip77SbmOE_45x45.png
./data/234_sketch.jpg
./data/ILip77SbmOE_mask.png
video_editing.py
supports video facial attribute editing and video face toonification.
python video_editing.py --ckpt STYLEGANEX_MODEL_PATH --data_path FACE_INPUT_PATH
The results are saved in the folder ./output/
.
Additional notes to consider:
--data_path
: the input can be either an image or a video.--scale_factor
: for attribute editing task ([styleganex_edit_hair/age]()), control the editing degree.configs/paths_config.py
to define the necessary data paths and model paths for training and evaluation. configs/transforms_config.py
for the transforms defined for each dataset/experiment. configs/data_configs.py
for the source/target data paths for the train and test sets
as well as the transforms.data_configs.py
to define your data paths.transforms_configs.py
to define your own data transforms.As an example, assume we wish to run encoding using ffhq (dataset_type=ffhq_encode
).
We first go to configs/paths_config.py
and define:
dataset_paths = {
'ffhq': '/path/to/ffhq/realign320x320'
'ffhq_test': '/path/to/ffhq/realign320x320_test'
}
The transforms for the experiment are defined in the class EncodeTransforms
in configs/transforms_config.py
.
Finally, in configs/data_configs.py
, we define:
DATASETS = {
'ffhq_encode': {
'transforms': transforms_config.EncodeTransforms,
'train_source_root': dataset_paths['ffhq'],
'train_target_root': dataset_paths['ffhq'],
'test_source_root': dataset_paths['ffhq_test'],
'test_target_root': dataset_paths['ffhq_test'],
},
}
When defining our datasets, we will take the values in the above dictionary.
The 1280x1280 ffhq images can be obtain by the modified script of official ffhq:
python script/download_ffhq1280.py --wilds
python script/download_ffhq1280.py --align
output_size=320, transform_size=1280
in Line 272 of download_ffhq1280.pyPlease download the pre-trained models to support the training of StyleGANEX | Path | Description |
---|---|---|
original_stylegan | StyleGAN trained with the FFHQ dataset | |
toonify_model | StyleGAN finetuned on cartoon dataset for image toonification (cartoon, pixar, arcane) | |
original_psp_encoder | pSp trained with the FFHQ dataset for StyleGAN inversion. | |
pretrained_encoder | StyleGANEX encoder pretrained with the synthetic data for StyleGAN inversion. | |
styleganex_encoder | StyleGANEX encoder trained with the FFHQ dataset for StyleGANEX inversion. | |
editing_vector | Editing vectors for editing face attributes (age, hair color) | |
augmentation_vector | Editing vectors for data augmentation |
The main training script can be found in scripts/train.py
.
Intermediate training results are saved to opts.exp_dir
. This includes checkpoints, train outputs, and test outputs.
Note: Our default code is a CPU-compatible version. You can switch to a more efficient version by using cpp extention.
To do so, please change models.stylegan2.op
to models.stylegan2.op_old
https://github.com/williamyang1991/StyleGANEX/blob/73b580cc7eb757e36701c094456e9ee02078d03e/models/stylegan2/model.py#L8
First pretrain encoder on synthetic 1024x1024 images. You can download our pretrained encoder here
python scripts/pretrain.py \
--exp_dir=/path/to/experiment \
--ckpt=/path/to/original_psp_encoder \
--max_steps=2000
Then finetune encoder on real 1280x1280 ffhq images based on the pretrained encoder
python scripts/train.py \
--dataset_type=ffhq_encode \
--exp_dir=/path/to/experiment \
--checkpoint_path=/path/to/pretrained_encoder \
--max_steps=100000 \
--workers=8 \
--batch_size=8 \
--val_interval=2500 \
--save_interval=50000 \
--start_from_latent_avg \
--id_lambda=0.1 \
--w_norm_lambda=0.001 \
--affine_augment \
--random_crop \
--crop_face
python scripts/train.py \
--dataset_type=ffhq_sketch_to_face \
--exp_dir=/path/to/experiment \
--stylegan_weights=/path/to/original_stylegan \
--max_steps=100000 \
--workers=8 \
--batch_size=8 \
--val_interval=2500 \
--save_interval=10000 \
--start_from_latent_avg \
--w_norm_lambda=0.005 \
--affine_augment \
--random_crop \
--crop_face \
--use_skip \
--skip_max_layer=1 \
--label_nc=1 \
--input_nc=1 \
--use_latent_mask
python scripts/train.py \
--dataset_type=ffhq_seg_to_face \
--exp_dir=/path/to/experiment \
--stylegan_weights=/path/to/original_stylegan \
--max_steps=100000 \
--workers=8 \
--batch_size=8 \
--val_interval=2500 \
--save_interval=10000 \
--start_from_latent_avg \
--w_norm_lambda=0.005 \
--affine_augment \
--random_crop \
--crop_face \
--use_skip \
--skip_max_layer=2 \
--label_nc=19 \
--input_nc=19 \
--use_latent_mask
python scripts/train.py \
--dataset_type=ffhq_super_resolution \
--exp_dir=/path/to/experiment \
--checkpoint_path=/path/to/styleganex_encoder \
--max_steps=100000 \
--workers=4 \
--batch_size=4 \
--val_interval=2500 \
--save_interval=10000 \
--start_from_latent_avg \
--adv_lambda=0.1 \
--affine_augment \
--random_crop \
--crop_face \
--use_skip \
--skip_max_layer=4 \
--resize_factors=8
For one model supporting multiple resize factors, set --skip_max_layer=2
and --resize_factors=1,2,4,8,16
python scripts/train.py \
--dataset_type=ffhq_edit \
--exp_dir=/path/to/experiment \
--checkpoint_path=/path/to/styleganex_encoder \
--max_steps=100000 \
--workers=2 \
--batch_size=2 \
--val_interval=2500 \
--save_interval=10000 \
--start_from_latent_avg \
--adv_lambda=0.1 \
--tmp_lambda=30 \
--affine_augment \
--crop_face \
--use_skip \
--skip_max_layer=7 \
--editing_w_path=/path/to/editing_vector \
--direction_path=/path/to/augmentation_vector \
--use_att=1 \
--generate_training_data
python scripts/train.py \
--dataset_type=toonify \
--exp_dir=/path/to/experiment \
--checkpoint_path=/path/to/styleganex_encoder \
--max_steps=55000 \
--workers=2 \
--batch_size=2 \
--val_interval=2500 \
--save_interval=10000 \
--start_from_latent_avg \
--adv_lambda=0.1 \
--tmp_lambda=30 \
--affine_augment \
--crop_face \
--use_skip \
--skip_max_layer=7 \
--toonify_weights=/path/to/toonify_model
options/train_options.py
for all training-specific flags. --label_nc=N
and --input_nc=N
where N
is the number of semantic categories. --label_nc=1
and --input_nc=1
.--label_nc=0
(the default value), will directly use the RGB colors as input.Overview of StyleGANEX inversion and facial attribute/style editing on unaligned faces:
Video facial attribute editing:
Video face toonification:
If you find this work useful for your research, please consider citing our paper:
@inproceedings{yang2023styleganex,
title = {StyleGANEX: StyleGAN-Based Manipulation Beyond Cropped Aligned Faces},
author = {Yang, Shuai and Jiang, Liming and Liu, Ziwei and and Loy, Chen Change},
booktitle = {ICCV},
year = {2023},
}
The code is mainly developed based on stylegan2-pytorch, pixel2style2pixel and VToonify.