wutaiqiang / GER-WSDM2023

The code for paper “Modeling Fine-grained Information via Knowledge-aware Hierarchical Graph for Zero-shot Entity Retrieval” in WSDM2023
6 stars 1 forks source link

I need to inquire about the issues encountered during training the model #1

Open qidandan opened 11 months ago

qidandan commented 11 months ago

The following are the parameters used during my training: --dataset_path data/zeshel \ --pretrained_model /work/users/qdd/bert-base-uncased/ \ --name ger_hgat \ --log_dir output/ger_hgat \ --mu 0.5 \ --epoch 10 \ --train_batch_size 32 \ --eval_batch_size 32 \ --encode_batch_size 128 \ --eval_interval 200 \ --logging_interval 10 \ --graph \ --gnn_layers 3 \ --learning_rate 2e-5 \ --do_eval \ --do_test \ --do_train \ --data_parallel \ --dual_loss \ --handle_batch_size 4 \ --return_type hgat When reproducing node_max_add, I only replaced the return_type with 'node_max_add,Everything else remains unchanged. The reproduction results show that node_max_add has a higher recall than HGAT I need to ask if there are any issues with the parameters I provided

wutaiqiang commented 11 months ago

could you please provide the specific data you get? for both node_max_add and hgat

qidandan commented 11 months ago

The following are the best results for HGAT with a recall of 64 +------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | World | R@1 | R@2 | R@4 | R@8 | R@16 | R@32 | R@50 | R@64 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | forgotten_realms | 0.5308 | 0.6842 | 0.775 | 0.8358 | 0.8675 | 0.905 | 0.9183 | 0.9233 | | lego | 0.4304 | 0.5847 | 0.7064 | 0.7807 | 0.8299 | 0.8782 | 0.8932 | 0.9041 | | star_trek | 0.4183 | 0.5465 | 0.6354 | 0.7038 | 0.7559 | 0.8025 | 0.8216 | 0.8353 | | yugioh | 0.2976 | 0.4158 | 0.5065 | 0.5779 | 0.634 | 0.6817 | 0.7175 | 0.7371 | | total | 0.3925 | 0.5235 | 0.6172 | 0.6864 | 0.737 | 0.7831 | 0.8067 | 0.821 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+

The following are the best results for node_max_add with a recall of 64 +------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | World | R@1 | R@2 | R@4 | R@8 | R@16 | R@32 | R@50 | R@64 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | forgotten_realms | 0.5767 | 0.73 | 0.7958 | 0.8442 | 0.8833 | 0.9083 | 0.9217 | 0.9333 | | lego | 0.4204 | 0.5972 | 0.7089 | 0.7807 | 0.8249 | 0.8632 | 0.8857 | 0.8982 | | star_trek | 0.4322 | 0.559 | 0.6473 | 0.7088 | 0.7596 | 0.8062 | 0.8306 | 0.8453 | | yugioh | 0.2979 | 0.4235 | 0.5083 | 0.5812 | 0.6363 | 0.6903 | 0.7241 | 0.7445 | | total | 0.4028 | 0.5384 | 0.6256 | 0.6906 | 0.7407 | 0.7862 | 0.8122 | 0.8282 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+

wutaiqiang commented 11 months ago

For hgat:

+------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | World | R@1 | R@2 | R@4 | R@8 | R@16 | R@32 | R@50 | R@64 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | forgotten_realms | 0.5858 | 0.7475 | 0.8217 | 0.8667 | 0.9075 | 0.9292 | 0.94 | 0.9475 | | lego | 0.4429 | 0.6239 | 0.7481 | 0.8182 | 0.8641 | 0.8957 | 0.9108 | 0.9224 | | star_trek | 0.4653 | 0.5907 | 0.682 | 0.7438 | 0.7918 | 0.8335 | 0.8566 | 0.8666 | | yugioh | 0.3216 | 0.4624 | 0.5578 | 0.6328 | 0.6932 | 0.7418 | 0.7706 | 0.7881 | | total | 0.4286 | 0.5702 | 0.6648 | 0.73 | 0.7811 | 0.8215 | 0.8441 | 0.8565 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+

for node_max_add +------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | World | R@1 | R@2 | R@4 | R@8 | R@16 | R@32 | R@50 | R@64 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | forgotten_realms | 0.5392 | 0.7083 | 0.8033 | 0.8492 | 0.8933 | 0.9192 | 0.9367 | 0.9392 | | lego | 0.4295 | 0.6105 | 0.7406 | 0.8098 | 0.8649 | 0.8991 | 0.9108 | 0.9208 | | star_trek | 0.4135 | 0.5434 | 0.6428 | 0.7102 | 0.7708 | 0.8126 | 0.8363 | 0.8495 | | yugioh | 0.2771 | 0.4232 | 0.5267 | 0.6153 | 0.6832 | 0.7395 | 0.7742 | 0.7887 | | total | 0.3845 | 0.5307 | 0.6346 | 0.7068 | 0.7672 | 0.8111 | 0.8363 | 0.8483 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+

wutaiqiang commented 11 months ago

The following are the parameters used during my training: --dataset_path data/zeshel --pretrained_model /work/users/qdd/bert-base-uncased/ --name ger_hgat --log_dir output/ger_hgat --mu 0.5 --epoch 10 --train_batch_size 32 --eval_batch_size 32 --encode_batch_size 128 --eval_interval 200 --logging_interval 10 --graph --gnn_layers 3 --learning_rate 2e-5 --do_eval --do_test --do_train --data_parallel --dual_loss --handle_batch_size 4 --return_type hgat When reproducing node_max_add, I only replaced the return_type with 'node_max_add,Everything else remains unchanged. The reproduction results show that node_max_add has a higher recall than HGAT I need to ask if there are any issues with the parameters I provided

Your batch size should be 128 rather than 32 --train_batch_size 128 \ --eval_batch_size 128 \

qidandan commented 11 months ago

The GPU has a memory size of 16GB,Due to limited GPU memory, the batch size can only be set to 32

wutaiqiang commented 11 months ago

You can try to set --gradient_accumulation to 4, it somehow may work but not guarantee.

wutaiqiang commented 11 months ago

The loss function is similar to the contrastive loss and the batch size really matters.

qidandan commented 11 months ago

Can you provide the model that you have trained?

wutaiqiang commented 11 months ago

Let me try, but this work was done during internship in Tencent, and I need to ask for permission to release the weights.

qidandan commented 11 months ago

Ok ,thank you very much.