Open qidandan opened 11 months ago
could you please provide the specific data you get? for both node_max_add and hgat
The following are the best results for HGAT with a recall of 64 +------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | World | R@1 | R@2 | R@4 | R@8 | R@16 | R@32 | R@50 | R@64 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | forgotten_realms | 0.5308 | 0.6842 | 0.775 | 0.8358 | 0.8675 | 0.905 | 0.9183 | 0.9233 | | lego | 0.4304 | 0.5847 | 0.7064 | 0.7807 | 0.8299 | 0.8782 | 0.8932 | 0.9041 | | star_trek | 0.4183 | 0.5465 | 0.6354 | 0.7038 | 0.7559 | 0.8025 | 0.8216 | 0.8353 | | yugioh | 0.2976 | 0.4158 | 0.5065 | 0.5779 | 0.634 | 0.6817 | 0.7175 | 0.7371 | | total | 0.3925 | 0.5235 | 0.6172 | 0.6864 | 0.737 | 0.7831 | 0.8067 | 0.821 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+
The following are the best results for node_max_add with a recall of 64 +------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | World | R@1 | R@2 | R@4 | R@8 | R@16 | R@32 | R@50 | R@64 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | forgotten_realms | 0.5767 | 0.73 | 0.7958 | 0.8442 | 0.8833 | 0.9083 | 0.9217 | 0.9333 | | lego | 0.4204 | 0.5972 | 0.7089 | 0.7807 | 0.8249 | 0.8632 | 0.8857 | 0.8982 | | star_trek | 0.4322 | 0.559 | 0.6473 | 0.7088 | 0.7596 | 0.8062 | 0.8306 | 0.8453 | | yugioh | 0.2979 | 0.4235 | 0.5083 | 0.5812 | 0.6363 | 0.6903 | 0.7241 | 0.7445 | | total | 0.4028 | 0.5384 | 0.6256 | 0.6906 | 0.7407 | 0.7862 | 0.8122 | 0.8282 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+
For hgat:
+------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | World | R@1 | R@2 | R@4 | R@8 | R@16 | R@32 | R@50 | R@64 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | forgotten_realms | 0.5858 | 0.7475 | 0.8217 | 0.8667 | 0.9075 | 0.9292 | 0.94 | 0.9475 | | lego | 0.4429 | 0.6239 | 0.7481 | 0.8182 | 0.8641 | 0.8957 | 0.9108 | 0.9224 | | star_trek | 0.4653 | 0.5907 | 0.682 | 0.7438 | 0.7918 | 0.8335 | 0.8566 | 0.8666 | | yugioh | 0.3216 | 0.4624 | 0.5578 | 0.6328 | 0.6932 | 0.7418 | 0.7706 | 0.7881 | | total | 0.4286 | 0.5702 | 0.6648 | 0.73 | 0.7811 | 0.8215 | 0.8441 | 0.8565 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+
for node_max_add +------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | World | R@1 | R@2 | R@4 | R@8 | R@16 | R@32 | R@50 | R@64 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+ | forgotten_realms | 0.5392 | 0.7083 | 0.8033 | 0.8492 | 0.8933 | 0.9192 | 0.9367 | 0.9392 | | lego | 0.4295 | 0.6105 | 0.7406 | 0.8098 | 0.8649 | 0.8991 | 0.9108 | 0.9208 | | star_trek | 0.4135 | 0.5434 | 0.6428 | 0.7102 | 0.7708 | 0.8126 | 0.8363 | 0.8495 | | yugioh | 0.2771 | 0.4232 | 0.5267 | 0.6153 | 0.6832 | 0.7395 | 0.7742 | 0.7887 | | total | 0.3845 | 0.5307 | 0.6346 | 0.7068 | 0.7672 | 0.8111 | 0.8363 | 0.8483 | +------------------+--------+--------+--------+--------+--------+--------+--------+--------+
The following are the parameters used during my training: --dataset_path data/zeshel --pretrained_model /work/users/qdd/bert-base-uncased/ --name ger_hgat --log_dir output/ger_hgat --mu 0.5 --epoch 10 --train_batch_size 32 --eval_batch_size 32 --encode_batch_size 128 --eval_interval 200 --logging_interval 10 --graph --gnn_layers 3 --learning_rate 2e-5 --do_eval --do_test --do_train --data_parallel --dual_loss --handle_batch_size 4 --return_type hgat When reproducing node_max_add, I only replaced the return_type with 'node_max_add,Everything else remains unchanged. The reproduction results show that node_max_add has a higher recall than HGAT I need to ask if there are any issues with the parameters I provided
Your batch size should be 128 rather than 32 --train_batch_size 128 \ --eval_batch_size 128 \
The GPU has a memory size of 16GB,Due to limited GPU memory, the batch size can only be set to 32
You can try to set --gradient_accumulation to 4, it somehow may work but not guarantee.
The loss function is similar to the contrastive loss and the batch size really matters.
Can you provide the model that you have trained?
Let me try, but this work was done during internship in Tencent, and I need to ask for permission to release the weights.
Ok ,thank you very much.
The following are the parameters used during my training: --dataset_path data/zeshel \ --pretrained_model /work/users/qdd/bert-base-uncased/ \ --name ger_hgat \ --log_dir output/ger_hgat \ --mu 0.5 \ --epoch 10 \ --train_batch_size 32 \ --eval_batch_size 32 \ --encode_batch_size 128 \ --eval_interval 200 \ --logging_interval 10 \ --graph \ --gnn_layers 3 \ --learning_rate 2e-5 \ --do_eval \ --do_test \ --do_train \ --data_parallel \ --dual_loss \ --handle_batch_size 4 \ --return_type hgat When reproducing node_max_add, I only replaced the return_type with 'node_max_add,Everything else remains unchanged. The reproduction results show that node_max_add has a higher recall than HGAT I need to ask if there are any issues with the parameters I provided