1 |
Gradient-Based Learning Applied to Document Recognition |
LeNet5 |
链接 |
链接 |
2 |
ImageNet Classification with Deep Convolutional Neural Networks |
AlexNet |
链接 |
链接 |
3 |
VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION |
VGGNet |
链接 |
链接 |
4 |
Visualizing and Understanding Convolutional Networks |
ZFNet,卷积网络可视化,反卷积网络 |
链接 |
链接 |
5 |
Going deeper with convolutions |
GoogLeNet,Inception-v1 |
链接 |
链接 |
6 |
Rich feature hierarchies for accurate object detection and semantic segmentation |
R-CNN |
链接 |
链接 |
7 |
Generative Adversarial Nets |
GAN |
链接 |
链接 |
8 |
Selective Search for Object Recognition |
Selective Search算法 |
链接 |
链接 |
9 |
Efficient Graph-Based Image Segmentation |
NULL |
链接 |
链接 |
10 |
Batch Normalization:Accelerating Deep Network Training by Reducing Internal Covariate Shift |
Batch Normalization,BN-Inception |
链接 |
链接 |
11 |
Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images |
GraphCut算法 |
链接 |
链接 |
12 |
“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts |
GrabCut算法 |
链接 |
链接 |
13 |
Topological Structural Analysis of Digitized Binary Images by Border Following |
Border Following,cv::findContours原理 |
链接 |
链接 |
14 |
Rethinking the Inception Architecture for Computer Vision |
Inception-v2,Inception-v3 |
链接 |
链接 |
15 |
U-Net: Convolutional Networks for Biomedical Image Segmentation |
U-Net |
链接 |
链接 |
16 |
Fully Convolutional Networks for Semantic Segmentation |
FCN,shift-and-stitch,backwards convolution,deconvolution |
链接 |
链接 |
17 |
Deep Residual Learning for Image Recognition |
ResNet |
链接 |
链接 |
18 |
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning |
Inception-v4,Inception-ResNet |
链接 |
链接 |
19 |
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition |
SPP-net |
链接 |
链接 |
20 |
Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis |
Elastic Distortions |
链接 |
链接 |
21 |
Fast R-CNN |
Fast R-CNN |
链接 |
链接 |
22 |
Layer Normalization |
Layer Normalization |
链接 |
链接 |
23 |
Attention Is All You Need |
Transformer,Multi-Head Attention |
链接 |
链接 |
24 |
Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks |
Faster R-CNN,Region Proposal Networks(RPN) |
链接 |
链接 |
25 |
FAST AND ACCURATE DEEP NETWORK LEARNING BY EXPONENTIAL LINEAR UNITS (ELUS) |
exponential linear unit(ELU)激活函数,Shifted ReLU(SReLU)激活函数 |
链接 |
链接 |
26 |
GAUSSIAN ERROR LINEAR UNITS (GELUS) |
Gaussian Error Linear Unit(GELU)激活函数,Sigmoid Linear Unit(SiLU)激活函数 |
链接 |
链接 |
27 |
You Only Look Once: Unified, Real-Time Object Detection |
YOLOv1 |
链接 |
链接 |
28 |
YOLO9000:Better, Faster, Stronger |
YOLOv2,YOLO9000 |
链接 |
链接 |
29 |
YOLOv3:An Incremental Improvement |
YOLOv3,Darknet-53 |
链接 |
链接 |
30 |
AN IMAGE IS WORTH 16X16 WORDS:TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE |
Vision Transformer(ViT) |
链接 |
链接 |
31 |
Distribution-Aware Coordinate Representation for Human Pose Estimation |
DARK |
链接 |
链接 |
32 |
ViTPose:Simple Vision Transformer Baselines for Human Pose Estimation |
ViTPose,Human Pose Estimation |
链接 |
链接 |
33 |
Swin Transformer:Hierarchical Vision Transformer using Shifted Windows |
Swin Transformer |
链接 |
链接 |
34 |
Deep High-Resolution Representation Learning for Visual Recognition |
HRNet |
链接 |
链接 |
35 |
FlowNet:Learning Optical Flow with Convolutional Networks |
FlowNet |
链接 |
链接 |
36 |
FlowNet 2.0:Evolution of Optical Flow Estimation with Deep Networks |
FlowNet2 |
链接 |
链接 |
37 |
3D Convolutional Neural Networks for Human Action Recognition |
3D卷积 |
链接 |
链接 |
38 |
3D U-Net:Learning Dense Volumetric Segmentation from Sparse Annotation |
3D U-Net |
链接 |
链接 |
39 |
V-Net:Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation |
V-Net,dice loss |
链接 |
链接 |
40 |
SURF:Speeded Up Robust Features |
SURF,U-SURF |
链接 |
链接 |
41 |
nnU-Net:Self-adapting Framework for U-Net-Based Medical Image Segmentation |
nnU-Net |
链接 |
链接 |
42 |
Histograms of Oriented Gradients for Human Detection |
HOG |
链接 |
链接 |
43 |
PERCEIVER IO:A GENERAL ARCHITECTURE FOR STRUCTURED INPUTS & OUTPUTS |
Perceiver IO |
链接 |
链接 |
44 |
Densely Connected Convolutional Networks |
DenseNet |
链接 |
链接 |
45 |
SimCC:a Simple Coordinate Classification Perspective for Human Pose Estimation |
SimCC |
链接 |
链接 |
46 |
Network In Network |
NIN |
链接 |
链接 |
47 |
Aggregated Residual Transformations for Deep Neural Networks |
ResNeXt |
链接 |
链接 |
48 |
CSPNET:A NEW BACKBONE THAT CAN ENHANCE LEARNING CAPABILITY OF CNN |
CSPNet |
链接 |
链接 |
49 |
Feature Pyramid Networks for Object Detection |
FPN |
链接 |
链接 |
50 |
Mask R-CNN |
Mask R-CNN |
链接 |
链接 |
51 |
Path Aggregation Network for Instance Segmentation |
PANet |
链接 |
链接 |
52 |
YOLOv4:Optimal Speed and Accuracy of Object Detection |
YOLOv4 |
链接 |
链接 |
53 |
YOLOv5 |
YOLOv5 |
\ |
链接 |
54 |
YOLOX:Exceeding YOLO Series in 2021 |
YOLOX |
链接 |
链接 |
55 |
Focal Loss for Dense Object Detection |
Focal Loss,RetinaNet |
链接 |
链接 |
56 |
RTMDet:An Empirical Study of Designing Real-Time Object Detectors |
RTMDet |
链接 |
链接 |
57 |
RTMPose:Real-Time Multi-Person Pose Estimation based on MMPose |
RTMPose |
链接 |
链接 |
58 |
Effective Whole-body Pose Estimation with Two-stages Distillation |
DWPose |
链接 |
链接 |
59 |
OpenPose:Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields |
OpenPose |
链接 |
链接 |
60 |
GPT系列论文 |
GPT1,GPT2,GPT3,GPT3.5,InstructGPT,GPT4 |
链接 |
链接 |
61 |
Self-Correctable and Adaptable Inference for Generalizable Human Pose Estimation |
SCAI |
链接 |
链接 |
62 |
Simple Baselines for Human Pose Estimation and Tracking |
SimpleBaseline |
链接 |
链接 |
63 |
TaG-Net:Topology-Aware Graph Network for Centerline-Based Vessel Labeling |
TaG-Net,vessel labeling,vessel segmentation |
链接 |
链接 |
64 |
OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks |
OverFeat,sliding window |
链接 |
链接 |
65 |
Bag of Tricks for Image Classification with Convolutional Neural Networks |
ResNet-vc,ResNet-vd |
链接 |
链接 |
66 |
R-FCN:Object Detection via Region-based Fully Convolutional Networks |
R-FCN |
链接 |
链接 |
67 |
Deformable Convolutional Networks |
DCN |
链接 |
链接 |
68 |
A Generic Camera Model and Calibration Method for Conventional, Wide-Angle, and Fish-Eye Lenses |
鱼眼相机校正 |
链接 |
链接 |
69 |
PP-YOLO:An Effective and Efficient Implementation of Object Detector |
PP-YOLO |
链接 |
链接 |
70 |
UnitBox:An Advanced Object Detection Network |
UnitBox,IoU loss |
链接 |
链接 |
71 |
IoU-aware Single-stage Object Detector for Accurate Localization |
IoU-aware loss |
链接 |
链接 |
72 |
PP-YOLOv2:A Practical Object Detector |
PP-YOLOv2 |
链接 |
链接 |
73 |
BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding |
BERT |
链接 |
链接 |
74 |
Group Normalization |
Batch Norm,Layer Norm,Instance Norm,Group Norm |
链接 |
链接 |
75 |
FCOS:Fully Convolutional One-Stage Object Detection |
FCOS |
链接 |
链接 |
76 |
Machine Learning for High-Speed Corner Detection |
FAST |
链接 |
链接 |
77 |
TOOD:Task-aligned One-stage Object Detection |
TOOD |
链接 |
链接 |
78 |
Generalized Focal Loss:Learning Qualified and Distributed Bounding Boxes for Dense Object Detection |
GFL,QFL,DFL |
链接 |
链接 |
79 |
BRISK:Binary Robust invariant scalable keypoints |
BRISK |
链接 |
链接 |
80 |
Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection |
ATSS |
链接 |
链接 |
81 |
VarifocalNet:An IoU-aware Dense Object Detector |
VFNet,Varifocal Loss,IACS |
链接 |
链接 |