xadrianzetx / optuna-distributed

Distributed hyperparameter optimization made easy
MIT License
34 stars 1 forks source link
distributed-computing hyperparameter-optimization machine-learning parallel-computing

optuna-distributed

An extension to Optuna which makes distributed hyperparameter optimization easy, and keeps all of the original Optuna semantics. Optuna-distributed can run locally, by default utilising all CPU cores, or can easily scale to many machines in Dask cluster.

Note

Optuna-distributed is still in the early stages of development. While core Optuna functionality is supported, few missing APIs (especially around Optuna integrations) might prevent this extension from being entirely plug-and-play for some users. Bug reports, feature requests and PRs are more than welcome.

Features

Installation

pip install optuna-distributed

Optuna-distributed requires Python 3.8 or newer.

Basic example

Optuna-distributed wraps standard Optuna study. The resulting object behaves just like regular study, but optimization process is asynchronous. Depending on setup of Dask client, each trial is scheduled to run on available CPU core on local machine, or physical worker in cluster.

Note

Running distributed optimization requires a Dask cluster with environment closely matching one on the client machine. For more information on cluster setup and configuration, please refer to https://docs.dask.org/en/stable/deploying.html.

import random
import time

import optuna
import optuna_distributed
from dask.distributed import Client

def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])
    # Some expensive model fit happens here...
    time.sleep(random.uniform(1.0, 2.0))
    return x**2 + y

if __name__ == "__main__":
    # client = Client("<your.cluster.scheduler.address>")  # Enables distributed optimization.
    client = None  # Enables local asynchronous optimization.
    study = optuna_distributed.from_study(optuna.create_study(), client=client)
    study.optimize(objective, n_trials=10)
    print(study.best_value)

But there's more! All of the core Optuna APIs, including storages, samplers and pruners are supported! If you'd like to know how Optuna-distributed works, then check out this article on Optuna blog.

What's missing?