xing0047 / TPS

[ECCV 2022] Domain Adaptive Video Segmentation via Temporal Pseudo Supervision
34 stars 6 forks source link

[ECCV 2022] Domain Adaptive Video Segmentation via Temporal Pseudo Supervision

[Paper] [Video Demo]

Highlights

Abstract

Video semantic segmentation has achieved great progress under the supervision of large amounts of labelled training data. However, domain adaptive video segmentation, which can mitigate data labelling constraint by adapting from a labelled source domain toward an unlabelled target domain, is largely neglected. We design temporal pseudo supervision (TPS), a simple and effective method that explores the idea of consistency training for learning effective representations from unlabelled target videos. Unlike traditional consistency training that builds consistency in spatial space, we explore consistency training in spatiotemporal space by enforcing model consistency across augmented video frames which helps learn from more diverse target data. Specifically, we design cross-frame pseudo labelling to provide pseudo supervision from previous video frames while learning from the augmented current video frames. The cross-frame pseudo labelling encourages the network to produce high-certainty predictions which facilitates consistency training with cross-frame augmentation effectively. Extensive experiments over multiple public datasets show that TPS is simpler to implement, much more stable to train, and achieves superior video segmentation accuracy as compared with the state-of-the-art.

Main Results

SYNTHIA-Seq => Cityscapes-Seq

Methods road side. buil. pole light sign vege. sky per. rider car mIoU
Source 56.3 26.6 75.6 25.5 5.7 15.6 71.0 58.5 41.7 17.1 27.9 38.3
DA-VSN 89.4 31.0 77.4 26.1 9.1 20.4 75.4 74.6 42.9 16.1 82.4 49.5
PixMatch 90.2 49.9 75.1 23.1 17.4 34.2 67.1 49.9 55.8 14.0 84.3 51.0
TPS 91.2 53.7 74.9 24.6 17.9 39.3 68.1 59.7 57.2 20.3 84.5 53.8

VIPER => Cityscapes-Seq

Methods road side. buil. fence light sign vege. terr. sky per. car truck bus motor bike mIoU
Source 56.7 18.7 78.7 6.0 22.0 15.6 81.6 18.3 80.4 59.9 66.3 4.5 16.8 20.4 10.3 37.1
PixMatch 79.4 26.1 84.6 16.6 28.7 23.0 85.0 30.1 83.7 58.6 75.8 34.2 45.7 16.6 12.4 46.7
DA-VSN 86.8 36.7 83.5 22.9 30.2 27.7 83.6 26.7 80.3 60.0 79.1 20.3 47.2 21.2 11.4 47.8
TPS 82.4 36.9 79.5 9.0 26.3 29.4 78.5 28.2 81.8 61.2 80.2 39.8 40.3 28.5 31.7 48.9

Note: PixMatch is reproduced with replacing the image segmentation backbone to a video segmentaion one.

Installation

  1. create conda environment

    conda create -n TPS python=3.6
    conda activate TPS
    conda install -c menpo opencv
    pip install torch==1.2.0 torchvision==0.4.0
  2. clone the ADVENT repo

    git clone https://github.com/valeoai/ADVENT
    pip install -e ./ADVENT
  3. clone the current repo

    git clone https://github.com/xing0047/TPS.git
    pip install -r ./TPS/requirements.txt
  4. resample2d dependency:

    python ./TPS/tps/utils/resample2d_package/setup.py build
    python ./TPS/tps/utils/resample2d_package/setup.py install

Data Preparation

  1. Cityscapes-Seq

    TPS/data/Cityscapes/
    TPS/data/Cityscapes/leftImg8bit_sequence/
    TPS/data/Cityscapes/gtFine/
  2. VIPER

    TPS/data/Viper/
    TPS/data/Viper/train/img/
    TPS/data/Viper/train/cls/
  3. Synthia-Seq

    TPS/data/SynthiaSeq/
    TPS/data/SynthiaSeq/SEQS-04-DAWN/

Pretrained Models

Download here and put them under pretrained_models.

Optical Flow Estimation

For quick preparation, please download the estimated optical flow of all datasets here.

Train and Test

Acknowledgement

This codebase is heavily borrowed from DA-VSN.

Contact

If you have any questions, feel free to contact: xing0047@e.ntu.edu.sg or dayan.guan@outlook.com.