This package archives a large number of datasets measuring democracy in use in the scholarly literature, and it provides functions to access many others. You can use it to access some widely used datasets, including Polity5, Freedom House, Geddes, Wright, and Frantz’ autocratic regimes dataset, the Lexical Index of Electoral Democracy, the DD/ACLP/PACL/CGV dataset, the main indexes of the V-Dem dataset, and many others.
The package is only available on Github. Install as follows:
remotes::install_github("xmarquez/democracyData")
For the vast majority of use cases, you can just type the name of the dataset you require. For example, here’s the DD/ACLP/PACL/CGV dataset:
library(democracyData)
pacl
#> # A tibble: 9,159 × 82
#> order pacl_country year aclpcode pacl_cowcode cowcode2 ccdcodelet ccdcodenum
#> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 1 Afghanistan 1946 142 700 700 AFG 1
#> 2 2 Afghanistan 1947 142 700 700 AFG 1
#> 3 3 Afghanistan 1948 142 700 700 AFG 1
#> 4 4 Afghanistan 1949 142 700 700 AFG 1
#> 5 5 Afghanistan 1950 142 700 700 AFG 1
#> 6 6 Afghanistan 1951 142 700 700 AFG 1
#> 7 7 Afghanistan 1952 142 700 700 AFG 1
#> 8 8 Afghanistan 1953 142 700 700 AFG 1
#> 9 9 Afghanistan 1954 142 700 700 AFG 1
#> 10 10 Afghanistan 1955 142 700 700 AFG 1
#> # ℹ 9,149 more rows
#> # ℹ 74 more variables: aclpyear <dbl>, cowcode2year <dbl>, cowcodeyear <dbl>,
#> # chgterr <dbl>, ychgterr <dbl>, flagc_cowcode2 <dbl>, flage_cowcode2 <dbl>,
#> # entryy <dbl>, exity <dbl>, cid <dbl>, wdicode <chr>, imf_code <dbl>,
#> # politycode <dbl>, bankscode <dbl>, dpicode <chr>, uncode <dbl>,
#> # un_region <dbl>, un_region_name <chr>, un_continent <dbl>,
#> # un_continent_name <chr>, aclp_region <dbl>, bornyear <dbl>, …
Here’s Polity IV:
polityIV
#> # A tibble: 17,562 × 40
#> cyear polityIV_ccode scode polityIV_country year flag fragment democ autoc
#> <dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21800 2 USA United States 1800 0 NA 7 3
#> 2 21801 2 USA United States 1801 0 NA 7 3
#> 3 21802 2 USA United States 1802 0 NA 7 3
#> 4 21803 2 USA United States 1803 0 NA 7 3
#> 5 21804 2 USA United States 1804 0 NA 7 3
#> 6 21805 2 USA United States 1805 0 NA 7 3
#> 7 21806 2 USA United States 1806 0 NA 7 3
#> 8 21807 2 USA United States 1807 0 NA 7 3
#> 9 21808 2 USA United States 1808 0 NA 7 3
#> 10 21809 2 USA United States 1809 0 NA 9 0
#> # ℹ 17,552 more rows
#> # ℹ 31 more variables: polity <dbl>, polity2 <dbl>, durable <dbl>, xrreg <dbl>,
#> # xrcomp <dbl>, xropen <dbl>, xconst <dbl>, parreg <dbl>, parcomp <dbl>,
#> # exrec <dbl>, exconst <dbl>, polcomp <dbl>, prior <dbl>, emonth <dbl>,
#> # eday <dbl>, eyear <dbl>, eprec <dbl>, interim <dbl>, bmonth <dbl>,
#> # bday <dbl>, byear <dbl>, bprec <dbl>, post <dbl>, change <dbl>, d4 <dbl>,
#> # sf <dbl>, regtrans <dbl>, extended_country_name <chr>, GWn <dbl>, …
And here’s a basic version of the V-Dem dataset, including only the 7 main indexes of democracy:
vdem_simple
#> # A tibble: 27,555 × 54
#> vdem_country_name country_text_id country_id year historical_date project
#> <chr> <chr> <dbl> <dbl> <date> <dbl>
#> 1 Mexico MEX 3 1789 1789-12-31 1
#> 2 Mexico MEX 3 1790 1790-12-31 1
#> 3 Mexico MEX 3 1791 1791-12-31 1
#> 4 Mexico MEX 3 1792 1792-12-31 1
#> 5 Mexico MEX 3 1793 1793-12-31 1
#> 6 Mexico MEX 3 1794 1794-12-31 1
#> 7 Mexico MEX 3 1795 1795-12-31 1
#> 8 Mexico MEX 3 1796 1796-12-31 1
#> 9 Mexico MEX 3 1797 1797-12-31 1
#> 10 Mexico MEX 3 1798 1798-12-31 1
#> # ℹ 27,545 more rows
#> # ℹ 48 more variables: historical <dbl>, histname <chr>, codingstart <dbl>,
#> # codingend <dbl>, codingstart_contemp <dbl>, codingend_contemp <dbl>,
#> # codingstart_hist <dbl>, codingend_hist <dbl>, gapstart1 <dbl>,
#> # gapstart2 <dbl>, gapstart3 <dbl>, gapend1 <dbl>, gapend2 <dbl>,
#> # gapend3 <dbl>, gap_index <dbl>, vdem_cowcode <dbl>, v2x_polyarchy <dbl>,
#> # v2x_polyarchy_codelow <dbl>, v2x_polyarchy_codehigh <dbl>, …
All datasets in this package are fully documented; type ?pacl
for
example to see the documentation for the PACL dataset.
There are a couple of democracy datasets that are not currently archived
in this package: the family of datasets released by Freedom
House and the full V-Dem dataset. To
download the Freedom House dataset, use the the download_*
family of
functions; to download the full V-Dem dataset, use the
vdemdata package. The
package does include the main indexes of version 13.0 of V-Dem (see
vdem_simple
), so you don’t need to use the
vdemdata package if you are
only interested in the higher-level indexes of democracy. You can also
download directly the latest versions of the World Bank’s Voice and
Accountability Index from the World Governance
Indicators and
Polity5, though there are
also archived versions of these two in the package.
For example, we can download and process the Freedom House “Freedom in the World” dataset as follows:
fh <- download_fh(verbose = FALSE)
#> Warning in download_fh(verbose = FALSE): NAs introduced by coercion
#> Warning in download_fh(verbose = FALSE): NAs introduced by coercion
fh
#> # A tibble: 9,045 × 11
#> fh_country year pr cl status fh_total fh_total_reversed
#> <chr> <dbl> <dbl> <dbl> <fct> <dbl> <dbl>
#> 1 Afghanistan 1972 4 5 PF 9 5
#> 2 Afghanistan 1973 7 6 NF 13 1
#> 3 Afghanistan 1974 7 6 NF 13 1
#> 4 Afghanistan 1975 7 6 NF 13 1
#> 5 Afghanistan 1976 7 6 NF 13 1
#> 6 Afghanistan 1977 6 6 NF 12 2
#> 7 Afghanistan 1978 7 7 NF 14 0
#> 8 Afghanistan 1979 7 7 NF 14 0
#> 9 Afghanistan 1980 7 7 NF 14 0
#> 10 Afghanistan 1982 7 7 NF 14 0
#> # ℹ 9,035 more rows
#> # ℹ 4 more variables: extended_country_name <chr>, GWn <dbl>, cown <dbl>,
#> # in_GW_system <lgl>
This downloads the latest update of the “Freedom in the World” dataset
(1972-2021, corresponding to the 2022 report), puts it in country-year
format (extracting the relevant info from the awful Excel table that
Freedom House makes available), calculates the variables fh_total
and
fh_total_reversed
, and adds state system information, including a
standardized country name, the
Gleditsch-Ward
country code and the Correlates of
War
country code.
Other democracy datasets included in this package do not need to be downloaded, but they can often also be “re-downloaded” from the websites of their creators or maintainers if required. For example, one can either access PACL directly by typing
pacl
#> # A tibble: 9,159 × 82
#> order pacl_country year aclpcode pacl_cowcode cowcode2 ccdcodelet ccdcodenum
#> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 1 Afghanistan 1946 142 700 700 AFG 1
#> 2 2 Afghanistan 1947 142 700 700 AFG 1
#> 3 3 Afghanistan 1948 142 700 700 AFG 1
#> 4 4 Afghanistan 1949 142 700 700 AFG 1
#> 5 5 Afghanistan 1950 142 700 700 AFG 1
#> 6 6 Afghanistan 1951 142 700 700 AFG 1
#> 7 7 Afghanistan 1952 142 700 700 AFG 1
#> 8 8 Afghanistan 1953 142 700 700 AFG 1
#> 9 9 Afghanistan 1954 142 700 700 AFG 1
#> 10 10 Afghanistan 1955 142 700 700 AFG 1
#> # ℹ 9,149 more rows
#> # ℹ 74 more variables: aclpyear <dbl>, cowcode2year <dbl>, cowcodeyear <dbl>,
#> # chgterr <dbl>, ychgterr <dbl>, flagc_cowcode2 <dbl>, flage_cowcode2 <dbl>,
#> # entryy <dbl>, exity <dbl>, cid <dbl>, wdicode <chr>, imf_code <dbl>,
#> # politycode <dbl>, bankscode <dbl>, dpicode <chr>, uncode <dbl>,
#> # un_region <dbl>, un_region_name <chr>, un_continent <dbl>,
#> # un_continent_name <chr>, aclp_region <dbl>, bornyear <dbl>, …
Or re-download the dataset from Jose Antonio Cheibub’s website as follows:
pacl_redownloaded <- redownload_pacl(verbose = FALSE)
pacl_redownloaded
#> # A tibble: 9,159 × 82
#> order pacl_country year aclpcode pacl_cowcode cowcode2 ccdcodelet ccdcodenum
#> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 1 Afghanistan 1946 142 700 700 AFG 1
#> 2 2 Afghanistan 1947 142 700 700 AFG 1
#> 3 3 Afghanistan 1948 142 700 700 AFG 1
#> 4 4 Afghanistan 1949 142 700 700 AFG 1
#> 5 5 Afghanistan 1950 142 700 700 AFG 1
#> 6 6 Afghanistan 1951 142 700 700 AFG 1
#> 7 7 Afghanistan 1952 142 700 700 AFG 1
#> 8 8 Afghanistan 1953 142 700 700 AFG 1
#> 9 9 Afghanistan 1954 142 700 700 AFG 1
#> 10 10 Afghanistan 1955 142 700 700 AFG 1
#> # ℹ 9,149 more rows
#> # ℹ 74 more variables: aclpyear <dbl>, cowcode2year <dbl>, cowcodeyear <dbl>,
#> # chgterr <dbl>, ychgterr <dbl>, flagc_cowcode2 <dbl>, flage_cowcode2 <dbl>,
#> # entryy <dbl>, exity <dbl>, cid <dbl>, wdicode <chr>, imf_code <dbl>,
#> # politycode <dbl>, bankscode <dbl>, dpicode <chr>, uncode <dbl>,
#> # un_region <dbl>, un_region_name <chr>, un_continent <dbl>,
#> # un_continent_name <chr>, aclp_region <dbl>, bornyear <dbl>, …
These two data frames should be identical:
identical(pacl, pacl_redownloaded)
#> [1] TRUE
You should thus normally use the “archived” versions of these datasets,
unless you want to manipulate the raw data yourself (using the
redownload_*
functions with the option return_raw = TRUE
), or think
they might have been updated since you installed this package.
For a list of all the democracy datasets available through this package,
type democracy_info
:
library(dplyr)
#> Warning: package 'dplyr' was built under R version 4.2.3
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
democracy_info %>%
knitr::kable()
dataset | long_name | main_democracy_measure_col | measure_type | based_on | in_pmm_replication | categorical_regime_types | user_extendable | downloadable | included_in_package | first_published_use | source_link | licensing_info | notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
anckar | The Anckar-Fredriksson dataset of political regimes | democracy | dichotomous | bmr | FALSE | TRUE | FALSE | TRUE | TRUE | 2018 | https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/7SSSAH&version=2.0 | CC0 1.0 | The democracy measure should be equivalent to democracy_omitteddata from bmr up to 2010; it may have some divergences for the 2011-2016 period. |
anrr | The Acemoglu, Naidu, Restrepo, and Robinson dataset | dem | dichotomous | FH,Polity | FALSE | FALSE | TRUE | FALSE | TRUE | 2019 | https://www.journals.uchicago.edu/doi/full/10.1086/700936 | Unknown. Assumed CC0 1.0 | The measure can be extended by using the latest FH, Polity, and PACL Data, but the rules are not entirely transparent, and some cases in the original dataset have been hand-coded. |
arat_pmm | The Arat measure of democracy | pmm_arat | continuous | NA | TRUE | FALSE | FALSE | FALSE | TRUE | 1991 | NA | Unknown. Assumed CC0 1.0 | Only available via the Pemstein, Meserve, and Melton (2013) replication data. I have not been able to access the original data. |
blm | The Bowman, Lehoucq, and Mahoney index of democracy for Central America | blm | trichotomous | NA | TRUE | FALSE | FALSE | FALSE | TRUE | 2005 | NA | Unknown. Assumed CC0 1.0 | This used to be downloadable; the website hosting it is down, however. |
bmr | The Boix-Miller-Rosato dichotomous coding of democracy, 1800-2015, version 4.0 | democracy,democracy_omitteddata,democracy_femalesuffrage | dichotomous | PACL | FALSE | FALSE | FALSE | TRUE | TRUE | 2010 | https://sites.google.com/site/mkmtwo/data | Unknown. Assumed CC0 1.0 | NA |
bnr | The Bernhard, Nordstrom & Reenock Event History Coding of Democratic Breakdowns | event,bnr | dichotomous | NA | FALSE | FALSE | TRUE | FALSE | TRUE | 2001 | NA | Unknown. Assumed CC0 1.0 | Can be extended using a full panel of sovereign countries (COW). Extended version included in this package. This used to be downloadable; the website hosting it is down, however. |
bti | The Berteslmann Index of Political transformation | SI_Democracy_Status | continuous | NA | FALSE | FALSE | FALSE | TRUE | TRUE | 2006 | https://bti-project.org/fileadmin/api/content/en/downloads/data/BTI_2006-2022_Scores.xlsx | Unknown. | NA |
bollen_pmm | The Bollen measure of democracy | pmm_bollen | continuous | NA | TRUE | FALSE | FALSE | FALSE | TRUE | 1978 | NA | Unknown. Assumed CC0 1.0 | The original data was compiled in 1978, for Bollen’s dissertation; existing data seems to be from the 2000 update. I do not know how much it changed over time. Only available via the Pemstein, Meserve, and Melton (2013) replication data. I have not been able to access the original data. |
doorenspleet | Renske Doorenspleet’s Democracy Dataset | doorenspleet,regime | dichotomous | Polity | FALSE | FALSE | FALSE | FALSE | TRUE | 2000 | https://www.cambridge.org/core/journals/world-politics/article/abs/reassessing-the-three-waves-of-democratization/25A6CB38E6746F98D882DFC43A54D211 | Unknown. Assumed CC0 1.0 | NA |
eiu | The Economist Intelligence Unit’s Democracy Index | eiu | continuous | NA | FALSE | FALSE | FALSE | FALSE | TRUE | 2006 | NA | Unknown. | The original data has to be manually extracted from the tables in the EIU’s pdf report on the index. |
fh | Freedom House “Freedom in the World” data | status,fh_total,fh_total_reversed | ordinal | FH | TRUE | FALSE | FALSE | TRUE | FALSE | 1973 | https://freedomhouse.org/reports/publication-archives | Unknown. | NA |
fh_full | Freedom House “Freedom in the World” data | total | continuous | FH | FALSE | FALSE | FALSE | TRUE | FALSE | 2013 | NA | Unknown. | This is the 0-100 score Freedom House uses for its more aggregated ratings. Freedom House changed its methodology in 2013, so the full data is different for this period; full data from 2003-2012 is available in their website, but is not yet included in this package. |
fh_electoral | Freedom House “Electoral Democracies” List | electoral | dichotomous | FH | FALSE | FALSE | FALSE | TRUE | FALSE | 1990 | NA | Unknown. | The electoral democracy list seems to have only been compiled since the 1990s, but I have not been able to find an exact date of first compilation. |
gwf | The Geddes Wright and Frantz Autocratic Regimes dataset | gwf_regimetype,gwf_nonautocracy | dichotomous | PACL | FALSE | TRUE | TRUE | TRUE | TRUE | 2014 | http://sites.psu.edu/dictators/ | Unknown. Assumed CC0 1.0 | Can be extended using the gwf_duration variable. Extended version included in this package. |
hadenius_pmm | Axel Hadenius’ Index of Democracy | pmm_hadenius | continuous | NA | TRUE | FALSE | FALSE | FALSE | TRUE | 1992 | NA | Unknown. Assumed CC0 1.0 | Only available via the Pemstein, Meserve, and Melton (2013) replication data. I have not been able to access the original data. |
kailitz | The Steffen Kailitz Dataset of Authoritarian Regime Types | combined_regime,kailitz_binary,kailitz_tri | dichotomous | NA | FALSE | TRUE | FALSE | FALSE | TRUE | 2013 | https://journals.sagepub.com/doi/full/10.1177/0192512115616830 | Unknown. | NA |
LIED | The Lexical Index of Electoral Democracy, v. 3 | lexical_index | ordinal | PIPE | FALSE | FALSE | FALSE | TRUE | TRUE | 2015 | https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/WPKNIT | CC0 1.0 | NA |
magaloni | Autocracies of the World, 1950-2012 (Version 1.0). | demo_nr,demo_r,regime_r,regime_nr | dichotomous | PACL | FALSE | TRUE | TRUE | TRUE | TRUE | 2013 | http://cddrl.fsi.stanford.edu/research/autocracies_of_the_world_dataset/ | Unknown. Assumed CC0 1.0 | Can be extended using the duration_nr variable. Extended version included in this package. |
mainwaring | Mainwaring, Brinks, and Perez Linan’s democracy measure for Latin America | mainwaring,Regime | trichotomous | NA | TRUE | FALSE | FALSE | FALSE | TRUE | 2001 | NA | Unknown. Assumed CC0 1.0 | NA |
munck_pmm | Munck Index of Democracy | pmm_munck | continuous | NA | TRUE | FALSE | FALSE | FALSE | TRUE | 2009 | NA | Unknown. Assumed CC0 1.0 | Only available via the Pemstein, Meserve, and Melton (2013) replication data. I have not been able to access the original data. |
pacl, pacl_update | The Democracy and Dictatorship Dataset (DD/PACL/ACLP/CGV) | democracy,regime,Democracy,DD_regime,DD_category | dichotomous | PACL | TRUE | TRUE | FALSE | TRUE | TRUE | 1996 | http://www.christianbjoernskov.com/bjoernskovrodedata/, https://uofi.box.com/shared/static/bba3968d7c3397c024ec.dta | Unknown. Assumed CC0 1.0 | The original data was first compiled, as far as I know, for the famous ACLP study “Modernization: Theories and Facts” study of 1996. It was extended and changed by Cheibub, Gandhi, and Vreeland in 2010 (pacl dataset) and further updated by Bjornskov and Rode (2020; pacl_update dataset), who added new institutional variables. |
peps | Participation-Enhanced Polity Score | PEPS1i,PEPS2i,PEPS1q,PEPS2q,PEPS1v,PEPS2v,polity1raw,Polity1,Polity2,Polity3 | continuous | Polity | FALSE | FALSE | FALSE | TRUE | TRUE | 2006 | http://www.lehigh.edu/~bm05/democracy/PEPS1pub.dta | Unknown. Assumed CC0 1.0 | NA |
PIPE | The Political Institutions and Political Events (PIPE) dataset | democracy,democracy2,regime | dichotomous | PIPE | FALSE | FALSE | FALSE | FALSE | TRUE | 2010 | https://sites.google.com/a/nyu.edu/adam-przeworski/home/data | Unknown. Assumed CC0 1.0 | Democracy measures in PIPE are calculated in this package on the basis of imperfect instructions in the codebook. Use with care. This used to be downloadable; the link no longer works, however. |
pitf | Political Instability Task Force democracy indicator | pitf_binary | dichotomous | Polity | FALSE | FALSE | FALSE | FALSE | TRUE | 2010 | http://www.systemicpeace.org/inscr/ | Unknown. Assumed CC0 1.0 | Constructed score on the basis of Polity data. |
pitf | Political Instability Task Force democracy indicator | pitf | ordinal | Polity | FALSE | FALSE | FALSE | FALSE | TRUE | 2010 | http://www.systemicpeace.org/inscr/ | Unknown. Assumed CC0 1.0 | Constructed score on the basis of Polity data. |
polityIV | The Polity IV dataset | polity,polity2 | ordinal | Polity | TRUE | FALSE | FALSE | TRUE | TRUE | 1975 | http://www.systemicpeace.org/inscr/ | Unknown. Assumed CC0 1.0 | The first compilation of this dataset (POLITY I) was probably first used in a 1975 study by Eckstein and Gurr, but had been collected by Gurr since the late 1960s. The current form of the data is very different from the original Polity I data. The Polity II codebook survives, but I find no record of the Polity I codebook. |
polity_annual | The Polity5 dataset | polity,polity2 | ordinal | Polity | TRUE | FALSE | FALSE | TRUE | FALSE | 1975 | http://www.systemicpeace.org/inscr/ | Unknown. Assumed CC0 1.0 | The first compilation of this dataset (POLITY I) was probably first used in a 1975 study by Eckstein and Gurr, but had been collected by Gurr since the late 1960s. The current form of the data is very different from the original Polity I data. The Polity II codebook survives, but I find no record of the Polity I codebook. |
polyarchy | The Polyarchy Scale and the Contestation Scale | cont,poly | ordinal | NA | TRUE | FALSE | FALSE | TRUE | TRUE | 1990 | https://www3.nd.edu/~mcoppedg/crd/poly8500.sav | Unknown. Assumed CC0 1.0 | NA |
polyarchy_dimensions | Latent Dimensions of Contestation and Inclusiveness by Michael Coppedge, Angel Alvarez, and Claudia Maldonado | CONTEST,INCLUS | continuous | latent variable | FALSE | FALSE | FALSE | TRUE | TRUE | 2008 | http://www3.nd.edu/~mcoppedg/crd/DahlDims.sav | Unknown. Assumed CC0 1.0 | NA |
prc_gasiorowski | The Political Regime Change (PRC) dataset. | regime,prc,prc_at_end_year,prc_at_beginning_year | trichotomous | NA | TRUE | FALSE | FALSE | FALSE | TRUE | 1996 | NA | Unknown. Assumed CC0 1.0 | NA |
reign | The Rulers, Elections, and Irregular Governance (REIGN) dataset, regime characteristics worksheet. | gwf_regimetype | dichotomous | GWF | FALSE | TRUE | FALSE | TRUE | TRUE | 2016 | https://github.com/OEFDataScience/REIGN.github.io | Unknown. Assumed CC0 1.0 | Archived here now, since collection has stopped. |
svmdi | Suport Vector Machine Democracy Index by Grundler and Krieger | svmdi, csvmdi | continuous | latent variable | FALSE | FALSE | FALSE | TRUE | TRUE | 2016 | https://ml-democracy-index.net/ | Unknown. Assumed CC0 1.0 | NA |
svmdi | Suport Vector Machine Democracy Index by Grundler and Krieger | dsvmdi | dichotomous | latent variable | FALSE | FALSE | FALSE | TRUE | TRUE | 2016 | https://ml-democracy-index.net/ | Unknown. Assumed CC0 1.0 | NA |
svolik_regime | Milan Svolik’s Regime Dataset | regime,regime_numeric | dichotomous | PACL | FALSE | FALSE | FALSE | FALSE | TRUE | 2012 | https://campuspress.yale.edu/svolik/the-politics-of-authoritarian-rule/ | Unknown. Assumed CC0 1.0 | NA |
uds | The Unified Democracy Scores | mean,median | continuous | latent variable | FALSE | FALSE | TRUE | FALSE | TRUE | 2010 | NA | Unknown. Assumed CC0 1.0 | Can be extended using the methods described in this package’s “Replicating and Extending the UD scores of Pemstein, Meserve, and Melton” article (https://xmarquez.github.io/democracyData/articles/articles/Replicating_and_extending_the_UD_scores.html) |
ulfelder | The Democracy/Autocracy Dataset by Jay Ulfelder | rgjtype | dichotomous | Polity | FALSE | FALSE | TRUE | TRUE | TRUE | 2007 | https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/18836 | CC0 1.0 | Can be extended using the rgjdurd and rgjdura variables. Extended version included in this package. |
utip | The University of Texas Inequality Project Categorical Dataset of Political Regimes | utip_trichotomous | trichotomous | NA | FALSE | TRUE | FALSE | TRUE | TRUE | 2008 | http://utip.lbj.utexas.edu/datasets.html | Unknown. Assumed CC0 1.0 | Both the dichotomous and trichotomous versions of these measures are calculated by this package. The original dataset distinguishes several different types of democracy. |
utip | The University of Texas Inequality Project Categorical Dataset of Political Regimes | utip_dichotomous,utip_dichotomous_strict | dichotomous | NA | FALSE | TRUE | FALSE | TRUE | TRUE | 2008 | http://utip.lbj.utexas.edu/datasets.html | Unknown. Assumed CC0 1.0 | Both the dichotomous and trichotomous versions of these measures are calculated by this package. The original dataset distinguishes several different types of democracy. |
vanhanen | Vanhanen measures of democracy, 1800-2018 | vanhanen_democratization | continuous | NA | TRUE | FALSE | FALSE | FALSE | TRUE | 1968 | https://services.fsd.tuni.fi/catalogue/FSD1289?lang=en&study_language=en | CC-BY 4.0 | Vanhanen first collected democracy data on 12 countries for his 1968 dissertation. Current data is different from the original data, though it still uses a similar conceptual scheme. |
vdem | The Varieties of Democracy Dataset, version 12 | v2x_polyarchy,v2x_api,v2x_mpi,v2x_libdem,v2x_partipdem,v2x_delibdem,v2x_egaldem | continuous | NA | FALSE | FALSE | FALSE | FALSE | TRUE | 2015 | https://www.v-dem.net/data/the-v-dem-dataset/ | CC-BY-SA 4.0 | The full dataset be accessed using the package vdemdata. (Use “remotes::install_github(”vdeminstitute/vdemdata”)“; the package is not on CRAN) |
wahman_teorell_hadenius | Authoritarian Regimes Data Set, version 5.0, by Axel Hadenius, Jan Teorell, & Michael Wahman | regime1ny,regime1nyrobust, regimeny, regimenyrobust | dichotomous | FH,Polity | FALSE | TRUE | FALSE | TRUE | TRUE | 2007 | https://sites.google.com/site/authoritarianregimedataset/data | Unknown. Assumed CC0 1.0 | NA |
wgi_democracy | The World Governance Indicators “Voice and Accountability” Index | Estimate | continuous | FH | FALSE | FALSE | FALSE | TRUE | TRUE | 2010 | http://info.worldbank.org/governance/wgi/ | Unknown. | NA |
You can create one huge data frame including all democracy measures with one call:
democracy_data <- generate_democracy_scores_dataset(output_format = "wide",
verbose = FALSE)
#> Warning in download_fh(verbose = verbose, include_territories = TRUE): NAs
#> introduced by coercion
#> Warning in download_fh(verbose = verbose, include_territories = TRUE): NAs
#> introduced by coercion
#> Warning: There was 1 warning in `mutate()`.
#> ℹ In argument: `prc = (structure(function (..., .x = ..1, .y = ..2, . = ..1)
#> ...`.
#> Caused by warning:
#> ! NAs introduced by coercion
democracy_data
#> # A tibble: 37,164 × 89
#> extended_country_name GWn cown in_GW_system year PEPS1i PEPS1q PEPS1v
#> <chr> <dbl> <dbl> <lgl> <dbl> <dbl> <dbl> <dbl>
#> 1 Abkhazia 396 NA FALSE 1997 NA NA NA
#> 2 Abkhazia 396 NA FALSE 1998 NA NA NA
#> 3 Abkhazia 396 NA FALSE 1999 NA NA NA
#> 4 Abkhazia 396 NA FALSE 2000 NA NA NA
#> 5 Abkhazia 396 NA FALSE 2001 NA NA NA
#> 6 Abkhazia 396 NA FALSE 2002 NA NA NA
#> 7 Abkhazia 396 NA FALSE 2003 NA NA NA
#> 8 Abkhazia 396 NA FALSE 2004 NA NA NA
#> 9 Abkhazia 396 NA FALSE 2005 NA NA NA
#> 10 Abkhazia 396 NA FALSE 2006 NA NA NA
#> # ℹ 37,154 more rows
#> # ℹ 81 more variables: PEPS2i <dbl>, PEPS2q <dbl>, PEPS2v <dbl>,
#> # PIPE_democracy <dbl>, PIPE_regime <dbl>, anckar_democracy <dbl>,
#> # anrr_democracy <dbl>, blm <dbl>, bmr_democracy <dbl>,
#> # bmr_democracy_femalesuffrage <dbl>, bmr_democracy_omitteddata <dbl>,
#> # bnr <dbl>, bnr_extended <dbl>, bti_democracy <dbl>, csvmdi <dbl>,
#> # doorenspleet <dbl>, dsvmdi <dbl>, eiu <dbl>, fh_electoral <dbl>, …
This can take some time, since it downloads all downloadable datasets
(Freedom House, Polity 5, and the WGI Voice and Accountability index),
processes them (adds state system information, puts them in country-year
format, fixes wrong codes, etc.), and matches them to all the other
datasets. In any case, you can select exactly which datasets to include
in your big data frame. See ?generate_democracy_scores_dataset
for
further options to customize the output.
The package also offers a series of convenience functions to calculate
latent variable indexes of democracy (following Pemstein, Meserve, and
Melton’s 2010 article
“Democratic Compromise: A Latent Variable Analysis of Ten Measures of
Regime Type”); see the vignette on Replicating and Extending the UD
scores of Pemstein, Meserve, and
Melton.
It also contains a pre-calculated extended version of these scores,
available as extended_uds
:
extended_uds
#> # A tibble: 36,841 × 20
#> extended_country_name GWn cown in_GW_system year z1 se_z1 z1_pct975
#> <chr> <dbl> <dbl> <lgl> <dbl> <dbl> <dbl> <dbl>
#> 1 Abkhazia 396 NA FALSE 1997 0.0307 0.328 0.674
#> 2 Abkhazia 396 NA FALSE 1998 0.0307 0.328 0.674
#> 3 Abkhazia 396 NA FALSE 1999 0.0307 0.328 0.674
#> 4 Abkhazia 396 NA FALSE 2000 0.0307 0.328 0.674
#> 5 Abkhazia 396 NA FALSE 2001 0.0307 0.328 0.674
#> 6 Abkhazia 396 NA FALSE 2002 0.0307 0.328 0.674
#> 7 Abkhazia 396 NA FALSE 2003 0.0307 0.328 0.674
#> 8 Abkhazia 396 NA FALSE 2004 0.0307 0.328 0.674
#> 9 Abkhazia 396 NA FALSE 2005 0.236 0.327 0.876
#> 10 Abkhazia 396 NA FALSE 2006 0.236 0.327 0.876
#> # ℹ 36,831 more rows
#> # ℹ 12 more variables: z1_pct025 <dbl>, z1_adj <dbl>, z1_pct975_adj <dbl>,
#> # z1_pct025_adj <dbl>, z1_as_prob <dbl>, z1_pct975_as_prob <dbl>,
#> # z1_pct025_as_prob <dbl>, z1_adj_as_prob <dbl>, z1_pct975_adj_as_prob <dbl>,
#> # z1_pct025_adj_as_prob <dbl>, num_measures <int>, measures <list>
The package also includes a couple of other convenience functions to
work with historical democracy data and determine state system
membership. The first is country_year_coder
, which works like the
countrycode
package,
except that it is able to determine state system information for
country-year pairs. Suppose you have this dataset:
my_weird_democracy_data <- tibble(
country = c("Germany", "Germany", "Germany",
"Germany", "East Germany",
"Federal Republic of Germany",
"Somaliland", "Somalia",
"Palestine", "Russia",
"Russia", "USSR",
"Republic of Vietnam",
"Yugoslavia", 'Yugoslavia',
"Vietnam, South"),
year = c( 2015, 1930, 1970, 1945, 1949,
1992, 1990, 1990, 1940, 1917,
1912, 1922, 1975, 1990, 1991, 1954),
my_measure = rnorm(16))
my_weird_democracy_data
#> # A tibble: 16 × 3
#> country year my_measure
#> <chr> <dbl> <dbl>
#> 1 Germany 2015 -0.848
#> 2 Germany 1930 0.151
#> 3 Germany 1970 -0.474
#> 4 Germany 1945 -1.31
#> 5 East Germany 1949 0.495
#> 6 Federal Republic of Germany 1992 -0.528
#> 7 Somaliland 1990 0.508
#> 8 Somalia 1990 -0.868
#> 9 Palestine 1940 0.691
#> 10 Russia 1917 0.794
#> 11 Russia 1912 -2.02
#> 12 USSR 1922 0.0446
#> 13 Republic of Vietnam 1975 0.133
#> 14 Yugoslavia 1990 2.12
#> 15 Yugoslavia 1991 1.37
#> 16 Vietnam, South 1954 0.171
and you then want to add state system information. country_year_coder
does that for you!
my_weird_democracy_data <- my_weird_democracy_data %>%
country_year_coder(country,
year,
match_type = "country",
verbose = FALSE,
include_in_output = c("extended_country_name",
"GWn", "cown",
"polity_ccode",
"in_GW_system",
"in_cow_system",
"in_polity_system",
"polity_startdate",
"polity_enddate"))
my_weird_democracy_data %>%
knitr::kable()
country | year | my_measure | extended_country_name | GWn | cown | polity_ccode | in_GW_system | in_cow_system | in_polity_system | polity_startdate | polity_enddate |
---|---|---|---|---|---|---|---|---|---|---|---|
Germany | 2015 | -0.8484332 | German Federal Republic | 260 | 255 | 255 | TRUE | TRUE | TRUE | 1990-10-02 | NA |
Germany | 1930 | 0.1509633 | Germany (Prussia) | 255 | 255 | 255 | TRUE | TRUE | TRUE | 1871-01-19 | 1945-05-07 |
Germany | 1970 | -0.4741500 | German Federal Republic | 260 | 260 | 260 | TRUE | TRUE | TRUE | 1945-05-08 | 1990-10-02 |
Germany | 1945 | -1.3103168 | German Federal Republic | 260 | 260 | 260 | FALSE | FALSE | TRUE | 1945-05-08 | 1990-10-02 |
East Germany | 1949 | 0.4952382 | German Democratic Republic | 265 | 265 | 265 | TRUE | FALSE | TRUE | 1945-05-08 | 1990-10-02 |
Federal Republic of Germany | 1992 | -0.5282101 | German Federal Republic | 260 | 255 | 255 | TRUE | TRUE | TRUE | 1990-10-02 | NA |
Somaliland | 1990 | 0.5084614 | Somaliland | NA | NA | NA | FALSE | FALSE | FALSE | NA | NA |
Somalia | 1990 | -0.8683599 | Somalia | 520 | 520 | 520 | TRUE | TRUE | TRUE | 1960-07-01 | NA |
Palestine | 1940 | 0.6913429 | British Mandate of Palestine | NA | NA | NA | FALSE | FALSE | FALSE | NA | NA |
Russia | 1917 | 0.7942985 | Russia (Soviet Union) | 365 | 365 | 365 | TRUE | TRUE | TRUE | 1800-01-01 | 1922-12-29 |
Russia | 1912 | -2.0181489 | Russia (Soviet Union) | 365 | 365 | 365 | TRUE | TRUE | TRUE | 1800-01-01 | 1922-12-29 |
USSR | 1922 | 0.0445613 | Russia (Soviet Union) | 365 | 365 | 364 | TRUE | TRUE | TRUE | 1922-12-30 | 1991-12-31 |
Republic of Vietnam | 1975 | 0.1333470 | Vietnam, Republic of | 817 | 817 | 817 | FALSE | FALSE | TRUE | 1955-10-26 | 1975-12-31 |
Yugoslavia | 1990 | 2.1189569 | Yugoslavia | 345 | 345 | 345 | TRUE | TRUE | TRUE | 1921-01-01 | 1991-07-01 |
Yugoslavia | 1991 | 1.3728548 | Yugoslavia | 345 | 345 | 347 | TRUE | TRUE | TRUE | 1991-07-01 | 2003-03-11 |
Vietnam, South | 1954 | 0.1714102 | Vietnam, Republic of | 817 | 817 | 817 | TRUE | TRUE | FALSE | 1955-10-26 | 1975-12-31 |
country_year_coder
tries to match not just the country name or the
country code (as countrycode
does), but also to figure out the
appropriate state system code given the year. (Above, for example, the
function figures out that Germany 1970 should get a COW code of 260, but
Germany 1992 should get 255 - though it should retain the 260 code in
the Gleditsch and Ward system of states. This is, incidentally, how
download_fh
adds the correct COW and GW country codes to Freedom
House’s Excel data). It also tries to figure out whether a given
country-year is in the specific state system list. (In the example
above, Germany in 1945 is not listed as a member of the state system in
either COW or Gleditsch and Ward, since it was occupied by the Allies as
of 31 December 1945, but is listed as a member of the state system in
Polity IV as the Federal Republic, though with a polity score of -66,
“interregnum”).
One nice thing about country_year_coder
(in my humble opinion!) is
that it can sometimes correct country coding errors; I’ve run across
more than one dataset with the supposed COW code 255 for the Federal
Republic of Germany for the period 1955-1990, which would prevent a
clean join to a dataset with the correct COW code, but would be caught
by country_year_coder
.
There is also a function that allows you to create a blank state system panel for any of the three main state systems:
create_panel(system = "cow")
#> # A tibble: 17,231 × 5
#> cown cow_country_name cow_startdate cow_enddate year
#> <dbl> <chr> <date> <date> <dbl>
#> 1 2 United States of America 1816-01-01 NA 1816
#> 2 2 United States of America 1816-01-01 NA 1817
#> 3 2 United States of America 1816-01-01 NA 1818
#> 4 2 United States of America 1816-01-01 NA 1819
#> 5 2 United States of America 1816-01-01 NA 1820
#> 6 2 United States of America 1816-01-01 NA 1821
#> 7 2 United States of America 1816-01-01 NA 1822
#> 8 2 United States of America 1816-01-01 NA 1823
#> 9 2 United States of America 1816-01-01 NA 1824
#> 10 2 United States of America 1816-01-01 NA 1825
#> # ℹ 17,221 more rows
create_panel(system = "GW")
#> # A tibble: 20,135 × 5
#> GWn GW_country_name GW_startdate GW_enddate year
#> <dbl> <chr> <date> <date> <dbl>
#> 1 2 United States of America 1816-01-01 NA 1816
#> 2 2 United States of America 1816-01-01 NA 1817
#> 3 2 United States of America 1816-01-01 NA 1818
#> 4 2 United States of America 1816-01-01 NA 1819
#> 5 2 United States of America 1816-01-01 NA 1820
#> 6 2 United States of America 1816-01-01 NA 1821
#> 7 2 United States of America 1816-01-01 NA 1822
#> 8 2 United States of America 1816-01-01 NA 1823
#> 9 2 United States of America 1816-01-01 NA 1824
#> 10 2 United States of America 1816-01-01 NA 1825
#> # ℹ 20,125 more rows
The standard citation
function from base R
will produce a list of
citations for all the datasets included in this package:
citation(package = "democracyData")
To cite any of the datasets included in this package use:
Acemoglu D, Naidu S, Restrepo P, Robinson JA (2019). “Democracy Does Cause Growth.” Journal of Political Economy, 127(1), 47-100. <doi:10.1086/700936> https://doi.org/10.1086/700936, https://www.journals.uchicago.edu/doi/10.1086/700936.
Anckar C, Fredriksson C (2018). “Classifying political regimes 1800-2016: a typology and a new dataset.” European Political Science. <doi:10.1057/s41304-018-0149-8> https://doi.org/10.1057/s41304-018-0149-8, https://doi.org/10.1057/s41304-018-0149-8.
Arat ZF (1991). Democracy and human rights in developing countries. Lynne Rienner Publishers, Boulder.
Bell C (2016). “The Rulers, Elections, and Irregular Governance Dataset (REIGN).” http://oefresearch.org/datasets/reign.
Bernhard M, Nordstrom T, Reenock C (2001). “Economic Performance, Institutional Intermediation, and Democratic Survival.” Journal of Politics, 63(3), 775-803. <doi:10.1111/0022-3816.00087> https://doi.org/10.1111/0022-3816.00087.
Bertelsmann Stiftung (2022). “Transformation Index of the Bertelsmann Stiftung 2022.” Bertelsmann Stiftung.
Bjørnskov C, Rode M (2020). “Regime types and regime change: A new dataset on democracy, coups, and political institutions.” The Review of International Organizations, 15(2), 531-551. <doi:10.1007/s11558-019-09345-1> https://doi.org/10.1007/s11558-019-09345-1.
Boix C, Miller M, Rosato S (2012). “A Complete Dataset of Political Regimes, 1800-2007.” Comparative Political Studies, 46(12), 1523-1554. <doi:10.1177/0010414012463905> https://doi.org/10.1177/0010414012463905.
Bollen KA (2001). “Cross-National Indicators of Liberal Democracy, 1950-1990.”
Bollen K, Paxton P (2000). “Subjective Measures of Liberal Democracy.” Comparative Political Studies, 33(1), 58-86. <doi:10.1177/0010414000033001003> https://doi.org/10.1177/0010414000033001003.
Bowman K, Lehoucq F, Mahoney J (2005). “Measuring Political Democracy: Case Expertise, Data Adequacy, and Central America.” Comparative Political Studies, 38(8), 939-970. <doi:10.1177/0010414005277083> https://doi.org/10.1177/0010414005277083.
Cheibub J, Gandhi J, Vreeland J (2010). “Democracy and dictatorship revisited.” Public Choice, 143(1), 67-101. <doi:10.1007/s11127-009-9491-2> https://doi.org/10.1007/s11127-009-9491-2.
Coppedge M, Alvarez A, Maldonado C (2008). “Two Persistent Dimensions of Democracy: Contestation and Inclusiveness.” The journal of politics, 70(03), 632-647. <doi:10.1017/S0022381608080663> https://doi.org/10.1017/S0022381608080663.
Coppedge M, Gerring J, Knutsen CH, Lindberg SI, Teorell J, Altman D, Bernhard M, Cornell A, Fish MS, Gastaldi L, Gjerløw H, Glynn A, Grahn S, Hicken A, Kinzelbach K, Marquardt KL, McMann K, Mechkova V, Neundorf A, Paxton P, Pemstein D, Rydén O, von Römer J, Seim B, Sigman R, Skaaning S, Staton J, Sundström A, Tzelgov E, Uberti L, Wang Y, Wig T, Ziblatt D (????). “V-Dem Codebook v13.”
Coppedge M, Reinicke WH (1990). “Measuring Polyarchy.” Studies in Comparative International Development, 25(1), 51-72. <doi:10.1007/Bf02716905> https://doi.org/10.1007/Bf02716905.
Doorenspleet R (2000). “Reassessing the Three Waves of Democratization.” World Politics, 52(03), 384-406. <doi:10.1017/S0043887100016580> https://doi.org/10.1017/S0043887100016580.
Freedom House (2023). “Freedom in the World 2023: Marking 50 Years in the Struggle for Democracy.” Freedom House. https://freedomhouse.org/report/freedom-world/2023/marking-50-years.
Gasiorowski M (1996). “An Overview of the Political Regime Change Dataset.” Comparative Political Studies, 29(4), 469-483. <doi:10.1177/0010414096029004004> https://doi.org/10.1177/0010414096029004004.
Geddes B, Wright J, Frantz E (2014). “Autocratic Breakdown and Regime Transitions: A New Data Set.” Perspectives on Politics, 12(1), 313-331. <doi:10.1017/S1537592714000851> https://doi.org/10.1017/S1537592714000851.
Gleditsch K, Ward MD (1999). “Interstate system membership: A revised list of independent states since the congress of Vienna.” International Interactions, 25(4), 393-413. <doi:10.1080/03050629908434958> https://doi.org/10.1080/03050629908434958.
Goldstone J, Bates R, Epstein D, Gurr T, Lustik M, Marshall M, Ulfelder J, Woodward M (2010). “A Global Model for Forecasting Political Instability.” American Journal of Political Science, 54(1), 190-208. <doi:10.1111/j.1540-5907.2009.00426.x> https://doi.org/10.1111/j.1540-5907.2009.00426.x.
Gründler K, Krieger T (2016). “Democracy and growth: Evidence from a machine learning indicator.” European Journal of Political Economy, 45, 85-107. <doi:10.1016/j.ejpoleco.2016.05.005> https://doi.org/10.1016/j.ejpoleco.2016.05.005, http://www.sciencedirect.com/science/article/pii/S0176268016300222.
Gründler K, Krieger T (2018). “Machine Learning Indices, Political Institutions, and Economic Development.” CESifo Group Munich. https://www.cesifo-group.de/DocDL/cesifo1_wp6930.pdf.
Gründler K, Krieger T (2021). “Using Machine Learning for measuring democracy: A practitioners guide and a new updated dataset for 186 countries from 1919 to 2019.” European Journal of Political Economy, 102-47. <doi:10.1016/j.ejpoleco.2021.102047> https://doi.org/10.1016/j.ejpoleco.2021.102047.
Hadenius A (1992). Democracy and development. Cambridge University Press, New York.
Hadenius A, Teorell J (2007). “Pathways from Authoritarianism.” Journal of Democracy, 18(1), 143-157.
Hsu S (2008). “The Effect of Political Regimes on Inequality, 1963-2002.” UTIP Working Paper.
Kailitz S (2013). “Classifying political regimes revisited: legitimation and durability.” Democratization, 20(1), 39-60. <doi:10.1080/13510347.2013.738861> https://doi.org/10.1080/13510347.2013.738861.
Kaufmann D, Kraay A (2020). “Worldwide Governance Indicators.” http://www.govindicators.org.
Magaloni B, Chu J, Min E (2013). “Autocracies of the World, 1950-2012 (Version 1.0).” http://cddrl.fsi.stanford.edu/research/autocracies_of_the_world_dataset.
Mainwaring S, Brinks D, Pérez-Liñán A (2001). “Classifying Political Regimes in Latin America.” Studies in Comparative International Development, 36(1), 37-65. <doi:10.1007/bf02687584> https://doi.org/10.1007/bf02687584.
Mainwaring S, Pérez-Liñán A, Brinks D (2014). “Political Regimes in Latin America, 1900-2007 (with Daniel Brinks).” In Democracies and Dictatorships in Latin America: Emergence, Survival, and Fall, chapter Political Regimes in Latin America, 1900-2007 (with Daniel Brinks). Cambridge University Press, New York.
Marquez X (2016). “A Quick Method for Extending the Unified Democracy Scores.” Available at SSRN 2753830. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2753830.
Márquez X (2020). “democracyData: A package for accessing and manipulating existing measures of democracy.” http://github.com/xmarquez/democracyData.
Marshall MG, Gurr TR (2020). Polity 5: Political Regime Characteristics and Transitions, 1800-2018. Dataset Users’ Manual..
Marshall MG, Gurr TR, Jaggers K (2019). Polity IV Project: Political Regime Characteristics and Transitions, 1800-2018. Dataset Users’ Manual..
Moon BE, Birdsall JH, Ciesluk S, Garlett LM, Hermias JJ, Mendenhall E, Schmid PD, Wong WH (2006). “Voting Counts: Participation in the Measurement of Democracy.” Studies in Comparative International Development, 41(2), 3-32. <doi:10.1007/BF02686309> https://doi.org/10.1007/BF02686309.
Munck G (2009). Measuring Democracy: A Bridge between Scholarship and Politics. The Johns Hopkins University Press, Baltimore.
Pemstein D, Marquardt KL, Tzelgov E, Wang Y, Medzihorsky J, Krusell J, Miri F, von Römer J (2022). “The V-Dem Measurement Model: Latent Variable Analysis for Cross-National and Cross-Temporal Expert-Coded Data.” Technical Report 21, Varieties of Democracy Institute, University of Gothenburg. https://www.v-dem.net/media/filer_public/25/cb/25cb3f3f-290d-46e1-8eaf-ff2d2c13f4a9/v-dem_working_paper_21.pdf.
Pemstein D, Meserve SA, Melton J (2013). “Replication data for: Democratic Compromise: A Latent Variable Analysis of Ten Measures of Regime Type.” http://hdl.handle.net/1902.1/PMM.
Pemstein D, Meserve S, Melton J (2010). “Democratic Compromise: A Latent Variable Analysis of Ten Measures of Regime Type.” Political Analysis, 18(4), 426-449. <doi:10.1093/pan/mpq020> https://doi.org/10.1093/pan/mpq020.
Przeworski A (2013). “Political Institutions and Political Events (PIPE) Data Set.” https://sites.google.com/a/nyu.edu/adam-przeworski/home/data.
Reich G (2002). “Categorizing Political Regimes: New Data for Old Problems.” Democratization, 9(4), 1-24. <doi:10.1080/714000289> https://doi.org/10.1080/714000289.
Skaaning S, Gerring J, Bartusevičius H (2015). “A Lexical Index of Electoral Democracy.” Comparative Political Studies, 48(12), 1491-1525. <doi:10.1177/0010414015581050> https://doi.org/10.1177/0010414015581050.
Svolik M (2012). The Politics of Authoritarian Rule. Cambridge University Press, Cambridge.
Taylor SJ, Ulfelder J (2015). “A Measurement Error Model of Dichotomous Democracy Status.” Available at SSRN. <doi:10.2139/ssrn.2726962> https://doi.org/10.2139/ssrn.2726962.
The Economist Intelligence Unit (2023). “Democracy Index 2022: Frontline democracy and the battle for Ukraine.” The Economist Intelligence Unit.
Ulfelder J (2012). “Democracy/Autocracy Data Set.” http://hdl.handle.net/1902.1/18836.
Ulfelder J, Lustik M (2007). “Modelling Transitions To and From Democracy.” Democratization, 14(3), 351-387. <doi:10.1080/13510340701303196> https://doi.org/10.1080/13510340701303196.
Vanhanen T (2019). “Measures of Democracy 1810-2018 (dataset). Version 8.0 (2019-06-17).” http://urn.fi/urn:nbn:fi:fsd:T-FSD1289.
Wahman M, Teorell J, Hadenius A (2013). “Authoritarian Regime Types Revisited: Updated Data in Comparative Perspective.” Contemporary Politics, 19(1), 19-34. https://sites.google.com/site/authoritarianregimedataset/data.
To see these entries in BibTeX format, use ‘print(
You can also find the citation for a specific dataset using the wrapper
cite_dataset
with the name of the dataset in this package:
cite_dataset("gwf")
[1] B. Geddes, J. Wright, and E. Frantz. “Autocratic Breakdown and Regime Transitions: A New Data Set”. In: Perspectives on Politics 12.1 (2014), pp. 313-331. DOI: 10.1017/S1537592714000851.
Feedback welcome!
Note that some functions in this package can be quite slow: generating a
full democracy dataset (including downloading Freedom House, Polity, and
WGI) or applying country_year_coder
to a large data frame both can
take some time. Suggestions to accelerate the code are welcome.
country_year_coder
fails to give correct answers in some weird edge
cases mostly involving Yugoslavia, Germany, or Vietnam. If you run
across any of these cases, let me know.