If this work somehow makes your day, maybe you can consider :)
small c++ library to quickly use onnxruntime to deploy deep learning models
Thanks to cardboardcode, we have the documentation for this small library.
Hope that they both are helpful for your work.
Table of Contents
- TODO
- Installation
-
How to Build
- How to test apps
TODO
Installation
- build onnxruntime from source with the following script
# onnxruntime needs newer cmake version to build
bash ./scripts/install_latest_cmake.bash
bash ./scripts/install_onnx_runtime.bash
# dependencies to build apps
bash ./scripts/install_apps_dependencies.bash
How to build
CPU
```bash
make default
# build examples
make apps
```
GPU with CUDA
```bash
make gpu_default
make gpu_apps
```
How to Run with Docker
CPU
```bash
# build
docker build -f ./dockerfiles/ubuntu2004.dockerfile -t onnx_runtime .
# run
docker run -it --rm -v `pwd`:/workspace onnx_runtime
```
GPU with CUDA
```bash
# build
# change the cuda version to match your local cuda version before build the docker
docker build -f ./dockerfiles/ubuntu2004_gpu.dockerfile -t onnx_runtime_gpu .
# run
docker run -it --rm --gpus all -v `pwd`:/workspace onnx_runtime_gpu
```
- Onnxruntime will be built with TensorRT support if the environment has TensorRT. Check [this memo](./docs/onnxruntime_tensorrt.md) for useful URLs related to building with TensorRT.
- Be careful to choose TensorRT version compatible with onnxruntime. A good guess can be inferred from [HERE](https://github.com/microsoft/onnxruntime/blob/main/dockerfiles/Dockerfile.tensorrt).
- Also it is not possible to use models whose input shapes are dynamic with TensorRT backend, according to [this](https://onnxruntime.ai/docs/execution-providers/TensorRT-ExecutionProvider.html#shape-inference-for-tensorrt-subgraphs)
How to test apps
Image Classification With Squeezenet
Usage
```bash
# after make apps
./build/examples/TestImageClassification ./data/squeezenet1.1.onnx ./data/images/dog.jpg
```
the following result can be obtained
```
264 : Cardigan, Cardigan Welsh corgi : 0.391365
263 : Pembroke, Pembroke Welsh corgi : 0.376214
227 : kelpie : 0.0314975
158 : toy terrier : 0.0223435
230 : Shetland sheepdog, Shetland sheep dog, Shetland : 0.020529
```
(back to top)
Object Detection With Tiny-Yolov2 trained on VOC dataset (with 20 classes)
Usage
- Download model from onnx model zoo: [HERE](https://github.com/onnx/models/tree/master/vision/object_detection_segmentation/yolov2)
- The shape of the output would be
```text
OUTPUT_FEATUREMAP_SIZE X OUTPUT_FEATUREMAP_SIZE * NUM_ANCHORS * (NUM_CLASSES + 4 + 1)
where OUTPUT_FEATUREMAP_SIZE = 13; NUM_ANCHORS = 5; NUM_CLASSES = 20 for the tiny-yolov2 model from onnx model zoo
```
- Test tiny-yolov2 inference apps
```bash
# after make apps
./build/examples/tiny_yolo_v2 [path/to/tiny_yolov2/onnx/model] ./data/images/dog.jpg
```
(back to top)
Object Instance Segmentation With MaskRCNN trained on MS CoCo Dataset (80 + 1(background) clasess)
Usage
- Download model from onnx model zoo: [HERE](https://github.com/onnx/models/tree/master/vision/object_detection_segmentation/mask-rcnn)
- As also stated in the url above, there are four outputs: boxes(nboxes x 4), labels(nboxes), scores(nboxes), masks(nboxesx1x28x28)
- Test mask-rcnn inference apps
```bash
# after make apps
./build/examples/mask_rcnn [path/to/mask_rcnn/onnx/model] ./data/images/dogs.jpg
```
(back to top)
Yolo V3 trained on Ms CoCo Dataset
Usage
- Download model from onnx model zoo: [HERE](https://github.com/onnx/models/tree/master/vision/object_detection_segmentation/yolov3)
- Test yolo-v3 inference apps
```bash
# after make apps
./build/examples/yolov3 [path/to/yolov3/onnx/model] ./data/images/no_way_home.jpg
```
(back to top)
Usage
- App to use onnx model trained with famous light-weight [Ultra-Light-Fast-Generic-Face-Detector-1MB](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB)
- Sample weight has been saved [./data/version-RFB-640.onnx](./data/version-RFB-640.onnx)
- Test inference apps
```bash
# after make apps
./build/examples/ultra_light_face_detector ./data/version-RFB-640.onnx ./data/images/endgame.jpg
```
(back to top)
Usage
- Download onnx model trained on COCO dataset from [HERE](https://github.com/Megvii-BaseDetection/YOLOX/tree/main/demo/ONNXRuntime)
```bash
# this app tests yolox_l model but you can try with other yolox models also.
wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_l.onnx -O ./data/yolox_l.onnx
```
- Test inference apps
```bash
# after make apps
./build/examples/yolox ./data/yolox_l.onnx ./data/images/matrix.jpg
```
(back to top)
Usage
- Download PaddleSeg's bisenetv2 trained on cityscapes dataset that has been converted to onnx [HERE](https://drive.google.com/file/d/1e-anuWG_ppDXmoy0sQ0sgrdutCTGlk95/view?usp=sharing) and copy to [./data directory](./data)
You can also convert your own PaddleSeg with following procedures
- [export PaddleSeg model](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.3/docs/model_export.md)
- convert exported model to onnx format with [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX)
- Test inference apps
```bash
./build/examples/semantic_segmentation_paddleseg_bisenetv2 ./data/bisenetv2_cityscapes.onnx ./data/images/sample_city_scapes.png
./build/examples/semantic_segmentation_paddleseg_bisenetv2 ./data/bisenetv2_cityscapes.onnx ./data/images/odaiba.jpg
```
(back to top)
Usage
- Convert SuperPoint's pretrained weights to onnx format
```bash
git submodule update --init --recursive
python3 -m pip install -r scripts/superpoint/requirements.txt
python3 scripts/superpoint/convert_to_onnx.py
```
- Download test images from [this dataset](https://github.com/StaRainJ/Multi-modality-image-matching-database-metrics-methods)
```bash
wget https://raw.githubusercontent.com/StaRainJ/Multi-modality-image-matching-database-metrics-methods/master/Multimodal_Image_Matching_Datasets/ComputerVision/CrossSeason/VisionCS_0a.png -P data
wget https://raw.githubusercontent.com/StaRainJ/Multi-modality-image-matching-database-metrics-methods/master/Multimodal_Image_Matching_Datasets/ComputerVision/CrossSeason/VisionCS_0b.png -P data
```
- Test inference apps
```bash
./build/examples/super_point /path/to/super_point.onnx data/VisionCS_0a.png data/VisionCS_0b.png
```
(back to top)
Usage
- Convert SuperPoint's pretrained weights to onnx format: Follow the above instruction
- Convert SuperGlue's pretrained weights to onnx format
```bash
git submodule update --init --recursive
python3 -m pip install -r scripts/superglue/requirements.txt
python3 -m pip install -r scripts/superglue/SuperGluePretrainedNetwork/requirements.txt
python3 scripts/superglue/convert_to_onnx.py
```
- Download test images from [this dataset](https://github.com/StaRainJ/Multi-modality-image-matching-database-metrics-methods): Or prepare some pairs of your own images
- Test inference apps
```bash
./build/examples/super_glue /path/to/super_point.onnx /path/to/super_glue.onnx /path/to/1st/image /path/to/2nd/image
```
(back to top)
Usage
- Download [LoFTR](https://github.com/zju3dv/LoFTR) weights indoor*ds_new.ckpt from [HERE](https://drive.google.com/drive/folders/1xu2Pq6mZT5hmFgiYMBT9Zt8h1yO-3SIp). (LoFTR's [latest commit](b4ee7eb0359d0062e794c99f73e27639d7c7ac9f) seems to be only compatible with the new weights (Ref: https://github.com/zju3dv/LoFTR/issues/48). Hence, this onnx cpp application is only compatible with \_indoor_ds_new.ckpt* weights)
- Convert LoFTR's pretrained weights to onnx format
```bash
git submodule update --init --recursive
python3 -m pip install -r scripts/loftr/requirements.txt
python3 scripts/loftr/convert_to_onnx.py --model_path /path/to/indoor_ds_new.ckpt
```
- Download test images from [this dataset](https://github.com/StaRainJ/Multi-modality-image-matching-database-metrics-methods): Or prepare some pairs of your own images
- Test inference apps
```bash
./build/examples/loftr /path/to/loftr.onnx /path/to/loftr.onnx /path/to/1st/image /path/to/2nd/image
```
(back to top)