xrsrke / pipegoose

Large scale 4D parallelism pre-training for 🤗 transformers in Mixture of Experts *(still work in progress)*
MIT License
76 stars 17 forks source link
3d-parallelism data-parallelism distributed-optimizers huggingface-transformers large-scale-language-modeling megatron megatron-lm mixture-of-experts model-parallelism moe pipeline-parallelism sequence-parallelism tensor-parallelism transformers zero-1

🚧 pipegoose: Large-scale 4D parallelism multi-modal pre-training for 🤗 transformers in Mixture of Experts

tests Code style: black Codecov Imports: isort

pipeline

We're building an end-to-end library for training multi-modal MoE in a decentralized way, as proposed by the paper DiLoCo. The core papers that we are replicating are:

If you're interested in contributing, check out [CONTRIBUTING.md] [good first issue] [roadmap]. Come join us: [discord link]

⚠️ Currently only parallelize transformers's bloom is supported.

from torch.utils.data import DataLoader
+ from torch.utils.data.distributed import DistributedSampler
from torch.optim import Adam
from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import load_dataset

+ from pipegoose.distributed import ParallelContext, ParallelMode
+ from pipegoose.nn import DataParallel, TensorParallel
+ from pipegoose.optim import DistributedOptimizer

model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-560m")
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
tokenizer.pad_token = tokenizer.eos_token

BATCH_SIZE = 4
+ DATA_PARALLEL_SIZE = 2
+ parallel_context = ParallelContext.from_torch(
+    tensor_parallel_size=2,
+    data_parallel_size=2,
+    pipeline_parallel_size=1
+ )
+ model = TensorParallel(model, parallel_context).parallelize()
+ model = DataParallel(model, parallel_context).parallelize()
model.to("cuda")
+ device = next(model.parameters()).device

optim = Adam(model.parameters(), lr=1e-3)
+ optim = DistributedOptimizer(optim, parallel_context)

dataset = load_dataset("imdb", split="train")
+ dp_rank = parallel_context.get_local_rank(ParallelMode.DATA)
+ sampler = DistributedSampler(dataset, num_replicas=DATA_PARALLEL_SIZE, rank=dp_rank, seed=42)
+ dataloader = DataLoader(dataset, batch_size=BATCH_SIZE // DATA_PARALLEL_SIZE, shuffle=False, sampler=sampler)

for epoch in range(100):
+    sampler.set_epoch(epoch)

    for batch in dataloader:
        inputs = tokenizer(batch["text"], padding=True, truncation=True, max_length=1024, return_tensors="pt")
        inputs = {name: tensor.to(device) for name, tensor in inputs.items()}
        labels = inputs["input_ids"]

        outputs = model(**inputs, labels=labels)

        optim.zero_grad()
        outputs.loss.backward()
        optim.step()

Installation and try it out

You can install the package through the following command:

git clone https://github.com/xrsrke/pipegoose.git
cd pipegoose && pip install -e .

And try out a hybrid tensor and data parallelism training script (You must have at least 4 GPUs in order to try hybrid 2D parallelism).

cd pipegoose/examples
torchrun --standalone --nnodes=1 --nproc-per-node=4 hybrid_parallelism.py

We did a small scale correctness test by comparing the validation losses between a paralleized transformer and one kept by default, starting at identical checkpoints and training data. We will conduct rigorous large scale convergence and weak scaling law benchmarks against Megatron and DeepSpeed in the near future if we manage to make it.

Features

Appreciation

Citation

@software{pipegoose,
  title = {{pipegoose: Large-scale 4D parallelism pre-training for `transformers`}},
  author = {},
  url = {https://github.com/xrsrke/pipegoose},
  doi = {},
  month = {},
  year = {2024},
  version = {},
}