[Models and Raw results] (Google Driver)
[Paper] (ArXiv)
The dataset will be released soon.
Use the Anaconda
conda create -n edtc python=3.6
conda activate edtc
bash install_pytorch17.sh
Edit dataset settings:
/path/to/EDTC/yolov5/data/antiuav.yaml
Then train the detector:
cd /path/to/EDTC/yolov5
python train.py
Run the following command to set paths for this project
python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir .
After running this command, you can modify paths by editing the file:
lib/train/admin/local.py # paths about training
experiments/uavtrack/baseline.yaml # paths about Stage1 training
experiments/uavtrack_eh/baseline.yaml # paths about Stage2 training
Stage1 training:
python tracking/train.py --script uavtrack --config baseline --save_dir . --mode multiple --nproc_per_node 8
Stage2 training:
python tracking/train.py --script uavtrack_eh --config baseline --save_dir /PATH/TO/SAVE/UAVTRACK_EH --mode multiple --nproc_per_node 8 --stage1_model /STAGE1/MODEL/PATH
Download the pretrained models [Models and Raw results] (Google Driver)
Edit the file:
lib/test/evaluation/local.py # paths about testing
./tracking/test.py
Edit the Line 133-134 of the files, set them according to the paths of YOLO model:
experiments/uavtrack_eh/baseline.yaml # YOLO pretrained model path
Before run the model:
export PYTHONPATH=$PYTHONPATH:/path/to/EDTC
export PYTHONPATH=$PYTHONPATH:/path/to/EDTC/yolov5
Then run the model:
python tracking/test.py uavtrack_eh baseline --dataset antiuav --threads 32 --num_gpus 8 --params__model /path/to/UAVTrackEH.pth.tar --params__search_area_scale 4.55
If you want to visualize the tracking results, please set:
self.show_result = True # /path/to/EDTC/lib/test/evaluation/environment.py Line 27
python tracking/evaluate_antiuav_performance.py