This repository provides a TensorFlow implementation of the paper When will you do what? - Anticipating Temporal Occurrences of Activities.
Click on the image.
data
folder in the same directory as main.py
.python main.py --model=MODEL --action=train --vid_list_file=./data/train.split1.bundle
where MODEL
is cnn
or rnn
.python main.py -h
.python main.py --model=MODEL --action=predict --vid_list_file=./data/test.split1.bundle
for evaluating the the model on split1 of Breakfast. --input_type
option to gt
. python main.py -h
.Run python eval.py --obs_perc=OBS-PERC --recog_dir=RESULTS-DIR
. Where RESULTS-DIR
contains the output predictions for a specific observation and prediction percentage, and OBS-PERC
is the corresponding observation percentage. For example python eval.py --obs_perc=.3 --recog_dir=./save_dir/results/rnn/obs0.3-pred0.5
will evaluate the output corresponding to 0.3 observation and 0.5 prediction.
If you use the code, please cite
Y. Abu Farha, A. Richard, J. Gall:
When will you do what? - Anticipating Temporal Occurrences of Activities
in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018
To download the used features please visit: An end-to-end generative framework for video segmentation and recognition.