A centralised library for building reporting APIs on top of multiple data stores to exploit them for what they do best.
We run millions of queries on multiple data sources for analytics every day. They run on hive, oracle, druid etc. We needed a way to utilize the data stores in our architecture to exploit them for what they do best. This meant we needed to easily tune and identify sets of use cases where each data store fits the best. Our goal became to build a centralized system which was able to make these decisions on the fly at query time and also take care of the end to end query execution. The system needed to take in all the heuristics available, applying any constraints already defined in the system and select the best data store to run the query. It then would need to generate the underlying queries and pass on all available information to the query execution layer in order to facilitate further optimization at that layer.
<dependency>
<groupId>com.yahoo.maha</groupId>
<artifactId>maha-api-jersey</artifactId>
<version>6.53</version>
</dependency>
For this example, you need druid instance running in local and wikitikcer dataset indexed into druid, please take look at http://druid.io/docs/latest/tutorials/quickstart.html
#
ColumnContext.withColumnContext { implicit dc: ColumnContext =>
Fact.newFact(
"wikipedia", DailyGrain, DruidEngine, Set(WikiSchema),
Set(
DimCol("channel", StrType())
, DimCol("cityName", StrType())
, DimCol("comment", StrType(), annotations = Set(EscapingRequired))
, DimCol("countryIsoCode", StrType(10))
, DimCol("countryName", StrType(100))
, DimCol("isAnonymous", StrType(5))
, DimCol("isMinor", StrType(5))
, DimCol("isNew", StrType(5))
, DimCol("isRobot", StrType(5))
, DimCol("isUnpatrolled", StrType(5))
, DimCol("metroCode", StrType(100))
, DimCol("namespace", StrType(100, (Map("Main" -> "Main Namespace", "User" -> "User Namespace", "Category" -> "Category Namespace", "User Talk"-> "User Talk Namespace"), "Unknown Namespace")))
, DimCol("page", StrType(100))
, DimCol("regionIsoCode", StrType(10))
, DimCol("regionName", StrType(200))
, DimCol("user", StrType(200))
),
Set(
FactCol("count", IntType())
,FactCol("added", IntType())
,FactCol("deleted", IntType())
,FactCol("delta", IntType())
,FactCol("user_unique", IntType())
,DruidDerFactCol("Delta Percentage", DecType(10, 8), "{delta} * 100 / {count} ")
)
)
}
.toPublicFact("wikiticker_stats",
Set(
PubCol("channel", "Wiki Channel", InNotInEquality),
PubCol("cityName", "City Name", InNotInEqualityLike),
PubCol("countryIsoCode", "Country ISO Code", InNotInEqualityLike),
PubCol("countryName", "Country Name", InNotInEqualityLike),
PubCol("isAnonymous", "Is Anonymous", InNotInEquality),
PubCol("isMinor", "Is Minor", InNotInEquality),
PubCol("isNew", "Is New", InNotInEquality),
PubCol("isRobot", "Is Robot", InNotInEquality),
PubCol("isUnpatrolled", "Is Unpatrolled", InNotInEquality),
PubCol("metroCode", "Metro Code", InNotInEquality),
PubCol("namespace", "Namespace", InNotInEquality),
PubCol("page", "Page", InNotInEquality),
PubCol("regionIsoCode", "Region Iso Code", InNotInEquality),
PubCol("regionName", "Region Name", InNotInEqualityLike),
PubCol("user", "User", InNotInEquality)
),
Set(
PublicFactCol("count", "Total Count", InBetweenEquality),
PublicFactCol("added", "Added Count", InBetweenEquality),
PublicFactCol("deleted", "Deleted Count", InBetweenEquality),
PublicFactCol("delta", "Delta Count", InBetweenEquality),
PublicFactCol("user_unique", "Unique User Count", InBetweenEquality),
PublicFactCol("Delta Percentage", "Delta Percentage", InBetweenEquality)
),
Set.empty,
getMaxDaysWindow, getMaxDaysLookBack
)
Fact definition is the static object specification for the facts and dimension columns present in the table in the data-source, you can say it is object image of the table. DimCol has the base name, data-types, annotation. Annotations are the configurations stating the primary key/foreign key configuration, special character escaping in the query generation, static value mapping ie StrType(100, (Map("Main" -> "Main Namespace", "User" -> "User Namespace", "Category" -> "Category Namespace", "User Talk"-> "User Talk Namespace"), "Unknown Namespace"))
. Fact definition can have derived columns, maha supports most common arithmetic derived expression.
Public Fact : Public fact contains the base name to public name mapping. Public Names can be directly used in the Request Json. Public fact are identified by the name called cube name ie 'wikiticker_stats'. Maha supports versioning on the cubes, you have multiple versions of the same cube.
Fact/Dimension Registration Factory: Facts and dimensions are registered under the derived static class object of FactRegistrationFactory or DimensionRegistration Factory. Factory Classes used in the maha-service-json-config.
Maha Service Config json contains one place config for launching maha-apis which includes the following.
We have created api-jersey/src/test/resources/maha-service-config.json
configuration to start with, this is maha api configuration for student and wiki registry.
Debugging maha-service-config json: For the configuration syntax of this json, you can take look at JsonModels/Factories in the service module. Once Maha Service loads this configuration, if there are some failures in loading the configuration then mahaService will return the list of FailedToConstructFactory/ ServiceConfigurationError/ JsonParseError.
Api-jersey uses maha-service-config json and create MahaResource beans. All you need to do is to create the following three beans 'mahaService', 'baseRequest', 'exceptionHandler' etc.
<bean id="mahaService" class="com.yahoo.maha.service.example.ExampleMahaService" factory-method="getMahaService"/>
<bean id="baseRequest" class="com.yahoo.maha.service.example.ExampleRequest" factory-method="getRequest"/>
<bean id="exceptionHandler" class="com.yahoo.maha.api.jersey.GenericExceptionMapper" scope="singleton" />
<import resource="classpath:maha-jersey-context.xml" />
Once your application context is ready, you are good to launch the war file on the web server. You can take look at the test application context that we have created for running local demo and unit test api-jersey/src/test/resources/testapplicationContext.xml
mvn clean install
in mahacd api-example
module and run mvn jetty:run
, you can run it with -X for debug logs. GET Domain request: Dimension and Facts
You can fetch wiki registry domain using curl http://localhost:8080/mahademo/registry/wiki/domain
Domain tells you lit of cubes and their corresponding list of fields that you can request for particular registry. Here wiki is the registry name.
GET Flatten Domain request : Flatten dimension and facts fields
You can get flatten domain using curl http://localhost:8080/mahademo/registry/wiki/flattenDomain
POST Maha Reporting Request for example student schema MahaRequest will look like following, you need to pass cube name, list of fields you want to fetch, filters, sorting columns etc.
{
"cube": "student_performance",
"selectFields": [
{
"field": "Student ID"
},
{
"field": "Class ID"
},
{
"field": "Section ID"
},
{
"field": "Total Marks"
}
],
"filterExpressions": [
{
"field": "Day",
"operator": "between",
"from": "2017-10-20",
"to": "2017-10-25"
},
{
"field": "Student ID",
"operator": "=",
"value": "213"
}
]
}
you can find student.json
in the api-example module, **make sure you change the dates to latest date range in YYYY-MM-dd to avoid max look back window error.
Curl command :
curl -H "Content-Type: application/json" -H "Accept: application/json" -X POST -d @student.json http://localhost:8080/mahademo/registry/student/schemas/student/query?debug=true
Sync Output :
{
"header": {
"cube": "student_performance",
"fields": [{
"fieldName": "Student ID",
"fieldType": "DIM"
},
{
"fieldName": "Class ID",
"fieldType": "DIM"
},
{
"fieldName": "Section ID",
"fieldType": "DIM"
},
{
"fieldName": "Total Marks",
"fieldType": "FACT"
}
],
"maxRows": 200
},
"rows": [
[213, 200, 100, 125],
[213, 198, 100, 120]
]
}
POST Maha Reporting Request for example wiki schema
Request :
{
"cube": "wikiticker_stats",
"selectFields": [
{
"field": "Wiki Channel"
},
{
"field": "Total Count"
},
{
"field": "Added Count"
},
{
"field": "Deleted Count"
}
],
"filterExpressions": [
{
"field": "Day",
"operator": "between",
"from": "2015-09-11",
"to": "2015-09-13"
}
]
}
Curl :
curl -H "Content-Type: application/json" -H "Accept: application/json" -X POST -d @wikiticker.json http://localhost:8080/mahademo/registry/wiki/schemas/wiki/query?debug=true
Output :
{"header":{"cube":"wikiticker_stats","fields":[{"fieldName":"Wiki Channel","fieldType":"DIM"},{"fieldName":"Total Count","fieldType":"FACT"},{"fieldName":"Added Count","fieldType":"FACT"},{"fieldName":"Deleted Count","fieldType":"FACT"}],"maxRows":200},"rows":[["#ar.wikipedia",423,153605,2727],["#be.wikipedia",33,46815,1235],["#bg.wikipedia",75,41674,528],["#ca.wikipedia",478,112482,1651],["#ce.wikipedia",60,83925,135],["#cs.wikipedia",222,132768,1443],["#da.wikipedia",96,44879,1097],["#de.wikipedia",2523,522625,35407],["#el.wikipedia",251,31400,9530],["#en.wikipedia",11549,3045299,176483],["#eo.wikipedia",22,13539,2],["#es.wikipedia",1256,634670,15983],["#et.wikipedia",52,2758,483],["#eu.wikipedia",13,6690,43],["#fa.wikipedia",219,74733,2798],["#fi.wikipedia",244,54810,2590],["#fr.wikipedia",2099,642555,22487],["#gl.wikipedia",65,12483,526],["#he.wikipedia",246,51302,3533],["#hi.wikipedia",19,34977,60],["#hr.wikipedia",22,25956,204],["#hu.wikipedia",289,166101,2077],["#hy.wikipedia",153,39099,4230],["#id.wikipedia",110,119317,2245],["#it.wikipedia",1383,711011,12579],["#ja.wikipedia",749,317242,21380],["#kk.wikipedia",9,1316,31],["#ko.wikipedia",533,66075,6281],["#la.wikipedia",33,4478,1542],["#lt.wikipedia",20,14866,242],["#min.wikipedia",1,2,0],["#ms.wikipedia",11,21686,556],["#nl.wikipedia",445,145634,6557],["#nn.wikipedia",26,33745,0],["#no.wikipedia",169,51385,1146],["#pl.wikipedia",565,138931,8459],["#pt.wikipedia",472,229144,8444],["#ro.wikipedia",76,28892,1224],["#ru.wikipedia",1386,640698,19612],["#sh.wikipedia",14,6935,2],["#simple.wikipedia",39,43018,546],["#sk.wikipedia",33,12188,72],["#sl.wikipedia",21,3624,266],["#sr.wikipedia",168,72992,2349],["#sv.wikipedia",244,42145,3116],["#tr.wikipedia",208,67193,1126],["#uk.wikipedia",263,137420,1959],["#uz.wikipedia",983,13486,8],["#vi.wikipedia",9747,295972,1388],["#war.wikipedia",1,0,0],["#zh.wikipedia",1126,191033,7916]]}
POST Maha Reporting Request for example student schema with TimeShift Curator MahaRequest will look like following, you need to pass cube name, list of fields you want to fetch, filters, sorting columns in the base request and timeshift curator configs (daysOffset is an day offset for requesting previous period's to and from dates)
{
"cube": "student_performance",
"selectFields": [
{
"field": "Student ID"
},
{
"field": "Class ID"
},
{
"field": "Section ID"
},
{
"field": "Total Marks"
}
],
"filterExpressions": [
{
"field": "Day",
"operator": "between",
"from": "2019-10-20",
"to": "2019-10-29"
},
{
"field": "Student ID",
"operator": "=",
"value": "213"
}
],
"curators": {
"timeshift": {
"config" : {
"daysOffset": 0
}
}
}
}
please note that we have loaded the test data for demo in current day and day before. For timeshift curator demo, we have loaded data for 11 days back of current date. Please make sure that you update the requested to and from dates according to current dates.
Curl command :
curl -H "Content-Type: application/json" -H "Accept: application/json" -X POST -d @student.json http://localhost:8080/mahademo/registry/student/schemas/student/query?debug=true
Sync Output :
{
"header": {
"cube": "student_performance",
"fields": [
{
"fieldName": "Student ID",
"fieldType": "DIM"
},
{
"fieldName": "Class ID",
"fieldType": "DIM"
},
{
"fieldName": "Section ID",
"fieldType": "DIM"
},
{
"fieldName": "Total Marks",
"fieldType": "FACT"
},
{
"fieldName": "Total Marks Prev",
"fieldType": "FACT"
},
{
"fieldName": "Total Marks Pct Change",
"fieldType": "FACT"
}
],
"maxRows": 200,
"debug": {}
},
"rows": [
[
213,
198,
100,
120,
98,
22.45
],
[
213,
200,
100,
125,
110,
13.64
]
]
}
POST Maha Reporting Request for example wiki schema with Total metrics curator
Request :
{
"cube": "wikiticker_stats",
"selectFields": [
{
"field": "Wiki Channel"
},
{
"field": "Total Count"
},
{
"field": "Added Count"
},
{
"field": "Deleted Count"
}
],
"filterExpressions": [
{
"field": "Day",
"operator": "between",
"from": "2015-09-11",
"to": "2015-09-13"
}
],
"curators": {
"totalmetrics": {
"config": {}
}
}
}
In druid quick-start tutorial, wikipedia data is loaded for 2015-09-12, thus no change in the requested dates here.
Curl :
curl -H "Content-Type: application/json" -H "Accept: application/json" -X POST -d @wikiticker.json http://localhost:8080/mahademo/registry/wiki/schemas/wiki/query?debug=true
Output :
{
"header": {
"cube": "wikiticker_stats",
"fields": [
{
"fieldName": "Wiki Channel",
"fieldType": "DIM"
},
{
"fieldName": "Total Count",
"fieldType": "FACT"
},
{
"fieldName": "Added Count",
"fieldType": "FACT"
},
{
"fieldName": "Deleted Count",
"fieldType": "FACT"
}
],
"maxRows": 200,
"debug": {}
},
"rows": [
[
"#ar.wikipedia",
0,
153605,
2727
],
[
"#be.wikipedia",
0,
46815,
1235
],
[
"#bg.wikipedia",
0,
41674,
528
],
[
"#ca.wikipedia",
0,
112482,
1651
],
... trimming other rows
],
"curators": {
"totalmetrics": {
"result": {
"header": {
"cube": "wikiticker_stats",
"fields": [
{
"fieldName": "Total Count",
"fieldType": "FACT"
},
{
"fieldName": "Added Count",
"fieldType": "FACT"
},
{
"fieldName": "Deleted Count",
"fieldType": "FACT"
}
],
"maxRows": -1,
"debug": {}
},
"rows": [
[
0,
9385573,
394298
]
]
}
}
}
}
Maha is currently queryable by json REST APIs.
We have exposed the standard JDBC interface to query maha so that users can use any other tool like SQL Labs/ dbeaver /Any other Database IDE that you like to query maha.
Users will be agnostic about which engine maha sql query will be fetching the data from and able to get the data back seamlessly without any code change from client side.
This feature is powered by Apache Calcite for sql parsing and Avatica JDBC for exposing the JDBC server.
You can follow the below steps to configure your local explorer and query maha jdbc.
http://localhost:8080/mahademo/registry/student/schemas/student/sql-avatica
to be used by avatica jdbc connection.docker run -p 8080:8080 -it pranavbhole/pbs-docker-images:maha-api-example
and it starts the maha-example-api server in local and you can skip step 1. JDBC URL = jdbc:avatica:remote:url=http://localhost:8080/mahademo/registry/student/schemas/student/sql-avatica
Driver Class Name = org.apache.calcite.avatica.remote.Driver
DESCRIBE student_performance;
SELECT 'Student ID', 'Total Marks', 'Student Name', 'Student Status' ,'Admitted Year',
'Class ID' FROM student_performance where 'Student ID' = 213
ORDER BY 'Total Marks' DESC;