AAAI 2020 [Arxiv]
This package is adapted from WDSR @ 3aeff43.
Networks | Parameters | DIV2K (val) | Set5 | B100 | Urban100 | Pre-trained models | Training command |
---|---|---|---|---|---|---|---|
WDSR x2 | 1,190,100 | 34.76 | 38.08 | 32.23 | 32.34 | Download | detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 2 --job_dir ./wdsr_x2 |
WDSR x3 | 1,195,605 | 31.03 | 34.45 | 29.14 | 28.33 | Download | detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 3 --job_dir ./wdsr_x3 |
WDSR x4 | 1,203,312 | 29.04 | 32.22 | 27.61 | 26.21 | Download | detailspython trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 4 --job_dir ./wdsr_x4 |
conda install pytorch torchvision -c pytorch
conda install tensorboard h5py scikit-image
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" git+https://github.com/NVIDIA/apex.git
python trainer.py --dataset div2k --eval_datasets div2k set5 bsds100 urban100 --model wdsr --scale 2 --job_dir ./wdsr_x2 --eval_only
DIV2K dataset: DIVerse 2K resolution high quality images as used for the NTIRE challenge on super-resolution @ CVPR 2017 Benchmarks (Set5, BSDS100, Urban100)
Download and organize data like:
wdsr/data/DIV2K/
├── DIV2K_train_HR
├── DIV2K_train_LR_bicubic
│ └── X2
│ └── X3
│ └── X4
├── DIV2K_valid_HR
└── DIV2K_valid_LR_bicubic
└── X2
└── X3
└── X4
wdsr/data/Set5/*.png
wdsr/data/BSDS100/*.png
wdsr/data/Urban100/*.png