NOTE: This library is deprecated. Please use cpp-peglib instead.
Yet another PEG (Parsing Expression Grammars) parser generator for Go.
If you need a PEG grammar checker, you may want to check peglint.
If you need a C++ version, please see cpp-peglib.
<
>
%whitespace
%word
// Create a PEG parser
parser, _ := NewParser(`
# Simple calculator
EXPR ← ATOM (BINOP ATOM)*
ATOM ← NUMBER / '(' EXPR ')'
BINOP ← < [-+/*] >
NUMBER ← < [0-9]+ >
%whitespace ← [ \t]*
---
# Expression parsing option
%expr = EXPR # Rule to apply 'precedence climbing method' to
%binop = L + - # Precedence level 1
%binop = L * / # Precedence level 2
`)
// Setup semantic actions
g := parser.Grammar
g["EXPR"].Action = func(v *Values, d Any) (Any, error) {
val := v.ToInt(0)
if v.Len() > 1 {
ope := v.ToStr(1)
rhs := v.ToInt(2)
switch ope {
case "+": val += rhs
case "-": val -= rhs
case "*": val *= rhs
case "/": val /= rhs
}
}
return val, nil
}
g["BINOP"].Action = func(v *Values, d Any) (Any, error) {
return v.Token(), nil
}
g["NUMBER"].Action = func(v *Values, d Any) (Any, error) {
return strconv.Atoi(v.Token())
}
// Parse
input := " 1 + 2 * 3 * (4 - 5 + 6) / 7 - 8 "
val, _ := parser.ParseAndGetValue(input, nil)
fmt.Println(val) // Output: -3
# Syntax
Start ← _ Expr
Expr ← Sum
Sum ← List(Product, SumOpe)
Product ← List(Value, ProOpe)
Value ← Number / T('(') Expr T(')')
# Token
SumOpe ← T('+' / '-')
ProOpe ← T('*' / '/')
Number ← T([0-9]+)
~_ ← [ \t\r\n]*
# Macro
List(I, D) ← I (D I)*
T(x) ← < x > _
parser, _ := NewParser(`
ROOT ← 'hello' 'world'
%whitespace ← [ \t\r\n]*
%word ← [a-z]+
`)
parser.Parse("hello world", nil) # OK
parser.Parse("helloworld", nil) # NG
// Create a PEG parser
parser, _ := NewParser(`
EXPRESSION <- TERM (TERM_OPERATOR TERM)*
TERM <- FACTOR (FACTOR_OPERATOR FACTOR)*
FACTOR <- NUMBER / '(' EXPRESSION ')'
TERM_OPERATOR <- < [-+] >
FACTOR_OPERATOR <- < [/*] >
NUMBER <- < [0-9]+ >
%whitespace <- [ \t\r\n]*
`)
// Evaluator
var eval func(ast *Ast) int
eval = func(ast *Ast) int {
if ast.Name == "NUMBER" {
val, _ := strconv.Atoi(ast.Token)
return val
} else {
nodes := ast.Nodes
val := eval(nodes[0])
for i := 1; i < len(nodes); i += 2 {
num := eval(nodes[i+1])
ope := nodes[i].Token[0]
switch ope {
case '+':
val += num
break
case '-':
val -= num
break
case '*':
val *= num
break
case '/':
val /= num
break
}
}
return val
}
}
// Generate AST
parser.EnableAst()
input := " 1 + 2 * 3 * (4 - 5 + 6) / 7 - 8 "
ret, _ := parser.ParseAndGetValue(input, nil)
ast := ret.(*Ast)
// Optimize AST
opt := NewAstOptimizer(nil)
ast = opt.Optimize(ast, nil)
// Evaluate AST
val := eval(ast)
fmt.Println(val) // Output: -3
MIT license (© 2016 Yuji Hirose)