This repository contains the PyTorch implementation for the paper "Density Uncertainty Layers for Reliable Uncertainty Estimation" published in AISTATS 2024.
The code is implemented using PyTorch 1.12.1.
To install the required packages (other than PyTorch)
pip install -r requirements.txt
To train Rank1 Density Uncertainty Layers WRN28 on CIFAR-10/100,
python run_cifar.py --dataset={cifar10/cifar100} --model=rank1_density_wrn28
To train other models, simply replace the model argument with one of
density_wrn28, bayesian_wrn28, mcdropout_wrn28, vdropout_wrn28, rank1_wrn28
For UCI benchmarks,
python run_uci.py --model={density_mlp/bayesian_mlp/mcdropout_mlp/vdropout_mlp/rank1_mlp}
@inproceedings{park2024,
title={Density Uncertainty Layers for Reliable Uncertainty Estimation},
author={Park, Yookoon and Blei, David},
booktitle={AISTATS},
year={2024}
}