Yige Yuan, Bingbing Xu, Liang Hou, Fei Sun, Huawei Shen, Xueqi Cheng
The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR), 2024
This is an official PyTorch implementation of paper TEA: Test-time Energy Adaptation.
CUDA_VISIBLE_DEVICES=0 python main.py --cfg cfgs/cifar10/energy.yaml
The default model using trained WRN-28-10 from RobustBench.
core/config.py defines all default settings, you can specify particular settings in cfgs/xx.yaml
Our code supports running other baselines with a one-line script, the supported baselines include:
# Baselines
CUDA_VISIBLE_DEVICES=0 python main.py --cfg cfgs/cifar10/source.yaml
CUDA_VISIBLE_DEVICES=0 python main.py --cfg cfgs/cifar10/norm.yaml
CUDA_VISIBLE_DEVICES=0 python main.py --cfg cfgs/cifar10/tent.yaml
CUDA_VISIBLE_DEVICES=0 python main.py --cfg cfgs/cifar10/eta.yaml
CUDA_VISIBLE_DEVICES=0 python main.py --cfg cfgs/cifar10/eata.yaml
CUDA_VISIBLE_DEVICES=0 python main.py --cfg cfgs/cifar10/sar.yaml
CUDA_VISIBLE_DEVICES=0 python main.py --cfg cfgs/cifar10/pl.yaml
CUDA_VISIBLE_DEVICES=0 python main.py --cfg cfgs/cifar10/shot.yaml
If you find our work useful, please consider citing our paper:
@article{yuan2023tea,
title={TEA: Test-time Energy Adaptation},
author={Yuan, Yige and Xu, Bingbing and Hou, Liang and Sun, Fei and Shen, Huawei and Cheng, Xueqi},
journal={arXiv preprint arXiv:2311.14402},
year={2023}
}