1Harbin Institute of Technology 2Tsinghua Univserity 3Communication University of China
*Corresponding author †Work done during an internship at Tsinghua Univserity
### [Paper](https://dl.acm.org/doi/abs/10.1145/3641519.3657499) | [Video Youtube](https://www.youtube.com/embed/3UvBkyPc-oc) | [Project Page](https://yufan1012.github.io/MonoGaussianAvatar)
Create a conda or python environment and activate. For e.g., conda create -n monogshead python=3.9; conda activate monogshead
.
Install PyTorch 1.11.0 with conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
. This version works with both PyTorch3d and functorch.
Install PyTorch3d:
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install pytorch3d
Install other requirements: cd ../monogaussianavatar; pip install -r requirement.txt; pip install -U face-detection-tflite
Install gaussian rasterization:
cd submodules/
git clone https://github.com/graphdeco-inria/gaussian-splatting --recursive
cd gaussian-splatting/
pip install -e submodules/diff-gaussian-rasterization
cd ..
Download FLAME model, choose FLAME 2020 and unzip it, copy 'generic_model.pkl' into ./code/flame/FLAME2020
Our data format is the same as IMavatar. You can download a preprocessed dataset from Google drive (subject 1 and 2)
If you'd like to generate your own dataset, please follow intructions in the IMavatar repo.
Link the dataset folder to ./data/datasets
. Link the experiment output folder to ./data/experiments
.
Download a pretrained model from .
Uncompress and put into the experiment folder ./data/experiments
.
python scripts/exp_runner.py ---conf ./confs/subject1.conf [--is_continue]
Set the is_eval flag for evaluation, optionally set checkpoint (if not, the latest checkpoint will be used) and load_path
python scripts/exp_runner.py --conf ./confs/subject1.conf --is_eval [--checkpoint 60] [--load_path ...]
We train our models with a single Nvidia 24GB RTX3090 GPU.
If you find our code or paper useful, please cite as:
@inproceedings{chen2024monogaussianavatar,
title={Monogaussianavatar: Monocular gaussian point-based head avatar},
author={Chen, Yufan and Wang, Lizhen and Li, Qijing and Xiao, Hongjiang and Zhang, Shengping and Yao, Hongxun and Liu, Yebin},
booktitle={ACM SIGGRAPH 2024 Conference Papers},
pages={1--9},
year={2024}
}