yurujaja / pangaea-bench

Towards Robust Evaluation for Geospatial Foundation Models
GNU General Public License v3.0
100 stars 9 forks source link

Tests

PANGAEA: A Global and Inclusive Benchmark for Geospatial Foundation Models

📚 Introduction

While geospatial foundation models (GFMs) have proliferated rapidly, their evaluations remain inconsistent and narrow. Existing works often utilize suboptimal downstream datasets (e.g., EuroSAT) and tasks (e.g., land cover classification), which constrain comparability and real-world usability. Additionally, a lack of diversity in evaluation protocols, including image resolution and sensor types, further complicates the extensive assessments of GFM performance.

To bridge this gap, we propose a standardized evaluation protocol that incorporates a wide-ranging selection of datasets, tasks, resolutions, and sensor types, establishing a robust and widely applicable benchmark for GFMs.

PANGAEA: a global and inclusive benchmark for geospatial foundation models

In this repo, you can find the code to benchmark GFMs. For the moment we included several GFMs that present different approaches. We look forward to adding new models and datasets.

For the moment, we support the following models:

Paper GitHub Keywords
SSL4EOS12 SSL4EO-S12: A Large-Scale Multi-Modal, Multi-Temporal
Dataset for Self-Supervised Learning in Earth Observation
link DINO, MAE, DATA2VEC, MOCO
Scale-MAE Scale-MAE: A Scale-Aware Masked Autoencoder for Multiscale Geospatial Representation Learning link Masked Autoencoders, Multiscale
SatlasNet SatlasPretrain: A Large-Scale Dataset for Remote Sensing Image Understanding link Supervised, Multi-temporal
GFM Towards Geospatial Foundation Models via Continual Pretraining link Swin, Continual Pre-training
SpectralGPT SpectralGPT: Spectral Remote Sensing Foundation Model link MAE, Multi-spectral
DOFA Neural Plasticity-Inspired Multimodal Foundation Model for Earth Observation link MAE, Dynamic bands
CROMA CROMA: Remote Sensing Representations with Contrastive Radar-Optical Masked Autoencoders link Contrastive Learning, MAE
Prithvi Foundation Models for Generalist Geospatial Artificial Intelligence link MAE, Multi-temporal
RemoteCLIP RemoteCLIP: A Vision Language Foundation Model for Remote Sensing link Contrastive Learning

And the following datasets:

Download Domain Task Sensors Location
HLS Burn Scars link Wildfire Semantic Segmentation HLS (Harmonized Landsat Sentinel-2) USA
MADOS link Marine Semantic Segmentation S2 Global
PASTIS-HD link Agriculture Semantic Segmentation S1, S2, SPOT-6 France
Sen1Floods11 link Flood Semantic Segmentation S1, S2 Global
xView2 link HADR Change Detection Maxar Global
Five Billion Pixels original version
(custom version coming soon)
(Urban) Land Cover Semantic Segmentation Gaofen-2 China
DynamicEarthNet link (Urban) Land Cover Semantic Segmentation PlanetFusion Global
CropTypeMapping link Agriculture Semantic Segmentation S1, S2, Planet South Sudan
SpaceNet 7 link Urban Change detection/
Semantic Segmentation
Planet Global
AI4SmallFarms link Agriculture Semantic segmentation S2 Cambodia/Vietnam
BioMassters link Forest Regression S1, S2 Finland

The repository supports the following tasks using geospatial (foundation) models:

It is also possible to train some supervised baselines, based on UNet.

🗺️ Datasets details

Please refer to Dataset Guide to understand the processing requirements and commands specific to each dataset.

If you want to fast-prototype your model, maybe you want to run fast experiments on smaller datasets. We suggest starting with MADOS, HLSBurnScars, SpaceNet7 and Sen1Floods11 and AI4SmallFarms. They offer good diversity in satellites and domains. In the future, we will release stratified subsets for each dataset to facilitate fast prototyping across all datasets.

🛠️ Setup

Clone the repository:

git clone https://github.com/yurujaja/pangaea-bench.git
cd pangaea-bench

Dependencies

We provide several ways to install the dependencies.

  1. Using either Conda or Mamba:

    conda env create -f environment.yaml
    conda activate pangaea-bench

    Optional: install Mamba for faster resolution times

    wget https://github.com/conda-forge/miniforge/releases/download/24.3.0-0/Mambaforge-24.3.0-0-Linux-x86_64.sh
    sh ./Mambaforge-24.3.0-0-Linux-x86_64.sh
    
    mamba env create -f environment.yaml
    mamba activate pangaea-bench
  2. Using pip, create a Python native virtual environment and install dependencies into it:

    export PANGAEA_PATH=/path/to/venv/pangaea-bench # change this
    python3 -m venv ${PANGAEA_PATH}
    source ${PANGAEA_PATH}/bin/activate
    
    pip install -r requirements.txt

    Then install the code repository as a development package

    pip install --no-build-isolation --no-deps -e .

🏋️ Training

To run experiments, please refer to configs/train.yaml. In it, in addition to some basic info about training (e.g. finetune for fine-tuning also the encoder, limited_label_train to train the model on a stratified subset of labels, num_workers, batch_size and so on), there are 5 different basic configs:

Other 3 configs are used to set other training parameters:

We provide several examples of command lines to initialize different training tasks on single GPU.

Please note:

💻 Decoder Finetuning

Single Temporal Semantic Segmentation

Take HLSBurnScars dataset, RemoteCLIP Encoder and Upernet Segmentation Decoder as example:

torchrun --nnodes=1 --nproc_per_node=1 pangaea/run.py \
   --config-name=train \
   dataset=hlsburnscars \
   encoder=remoteclip \
   decoder=seg_upernet\
   preprocessing=seg_default \
   criterion=cross_entropy \
   task=segmentation

If you want to overwrite some parameters (e.g. turn off wandbe, change batch size and the path to the dataset, and use 50% stratified sampled subset for training):

torchrun --nnodes=1 --nproc_per_node=1 pangaea/run.py \
   --config-name=train \
   dataset=hlsburnscars \
   encoder=remoteclip \
   decoder=seg_upernet\
   preprocessing=seg_default \
   criterion=cross_entropy \
   task=segmentation \
   dataset.root_path= /path/to/the/dataset/hlsburnscars \
   batch_size=16 \
   use_wandb=False \
   limited_label_train=0.5 \
   limited_label_strategy=stratified

Multi-Temporal Semantic Segmentation

An example of using SSL4EO-DINO on CropTypeMapping is as below

torchrun --nnodes=1 --nproc_per_node=1 pangaea/run.py \
   --config-name=train \
   dataset=croptypemapping \
   encoder=ssl4eo_dino \
   decoder=seg_upernet_mt_ltae \
   preprocessing=seg_resize \
   criterion=cross_entropy \
   task=segmentation

To use SatlasNet encoder, the configs/encoder/satlasnet_mi.yaml is required

torchrun --nnodes=1 --nproc_per_node=1 pangaea/run.py \
   --config-name=train \
   dataset=croptypemapping \
   encoder=satlasnet_mi \
   decoder=seg_upernet_mt_ltae decoder.multi_temporal_strategy=null \
   preprocessing=seg_resize \
   criterion=cross_entropy \
   task=segmentation

To overwrite parameters, please check the Single Temporal Semantic Segmentation example.

Change Detection

One of the change detection decoder should be used: configs/decoder/seg_siamupernet_conc.yaml employs feature concatenation strategy while configs/decoder/seg_siamupernet_diff.yaml uses feature differencing strategy. For example, Prithvi encoder on xView2:

torchrun --nnodes=1 --nproc_per_node=1 pangaea/run.py \
   --config-name=train \
   dataset=xview2 \
   encoder=prithvi \
   decoder=seg_siamupernet_conc \
   preprocessing=seg_default \
   criterion=cross_entropy \
   task=change_detection

To overwrite parameters, please check the Single Temporal Semantic Segmentation example.

Single Temporal Regression

The regression decoder (e.g. configs/decoder/reg_upernet.yaml) and the regression task (e.g. configs/task/regression.yaml) configs should be used. E.g. Prithvi encoder on BioMassters

torchrun --nnodes=1 --nproc_per_node=1 pangaea/run.py \
   --config-name=train \
   dataset=biomassters \
   encoder=prithvi \
   decoder=reg_upernet \
   preprocessing=reg_default \
   criterion=mse \
   task=regression

To use SatlasNet encoder, the configs/encoder/satlasnet_si.yaml is required. To overwrite parameters, please check the Single Temporal Semantic Segmentation example.

Multi-Temporal Regression

The multi-temporal regression decoder (e.g. configs/decoder/reg_upernet_mt_ltae.yaml or configs/decoder/reg_upernet_mt_linear.yaml) and the regression task (e.g. configs/task/regression.yaml) configs should be used.

Take Prithvi encoder on BioMassters as example:

torchrun --nnodes=1 --nproc_per_node=1 pangaea/run.py \
   --config-name=train \
   dataset=biomassters \
   encoder=prithvi \
   decoder=reg_upernet_mt_ltae \
   preprocessing=reg_default \
   criterion=mse \
   task=regression

To use SatlasNet encoder, please refer to the multi-temporal semantic segmentation example. To overwrite parameters, please check the Single Temporal Semantic Segmentation example.

💻 End-to-end Finetuning

It is enough to add finetune=True to the command line.

For example, for single-temporal semantic segmentation:

torchrun --nnodes=1 --nproc_per_node=1 pangaea/run.py \
   --config-name=train \
   dataset=hlsburnscars \
   encoder=remoteclip \
   decoder=upernet\
   preprocessing=default \
   criterion=cross_entropy \
   task=segmentation \
   finetune=True

💻 Fully Supervised Baseline

The repo supports also training fully supervised baselines (e.g. UNet). To run these, follow the same command line rules as for other models. Keep in mind that setting finetune=True is necessary since this fully supervised approach trains the model from scratch. An example for single temporal semantic segmentation is provided (Sen1Floods11 dataset):

torchrun --nnodes=1 --nproc_per_node=1 pangaea/run.py \
   --config-name=train \
   dataset=sen1floods11 \
   encoder=unet_encoder \
   decoder=seg_unet \
   preprocessing=seg_default \
   criterion=cross_entropy \
   task=segmentation \
   finetune=True

For the moment, there is no multi-temporal baseline supported.

🔧 Customization

Using Your Own Dataset

Refer to: Adding a new downstream dataset

Using Your Own Model

Refer to: Adding a new geospatial foundation model

🏃 Evaluation

An evaluation step is always run after the training.

If you want to just run an evaluation, indicate the ckpt_dir where the checkpoints and configurations are stored.

torchrun pangaea/run.py --config-name=test ckpt_dir=path_to_ckpt_dir

✏️ Contributing

We appreciate all contributions. Please refer to Contributing Guidelines.

⚠️ Warnings

Some features are under construction:

🧮 Some first results

A pre-print is coming soon... Stay tuned!

Encoder Dataset Epochs mIoU
Prithvi MADOS 80 53.455
Prithvi HLSBurnScars 80 86.208
Prithvi Sen1Floods11 80 87.217
Prithvi AI4SmallFarms 80 33.796

NOTE: if you want to benchmark the results of your model, for a fair comparison do not change the hparams in the configs! When the pre-print will be out, we will publish also a set of "benchmark-configs".

📝 Citation

If you use this software in your work, please cite:

@misc{pangaea,
  author = {Pangaea Team},
  title = {Pangaea},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/yurujaja/pangaea-bench}},
}