yuvalkirstain / s2e-coref

MIT License
46 stars 15 forks source link

Coreference Resolution without Span Representations

This repository contains the code implementation from the paper "Coreference Resolution without Span Representations".

Set up

Requirements

Set up a virtual environment and run:

pip install -r requirements.txt

Follow the Quick Start to enable mixed precision using apex.

Download the official evaluation script

Run (from inside the repo):

git clone https://github.com/conll/reference-coreference-scorers.git

Prepare the dataset

This repo assumes access to the OntoNotes 5.0 corpus. Convert the original dataset into jsonlines format using:

export DATA_DIR=<data_dir>
python minimize.py $DATA_DIR

Credit: This script was taken from the e2e-coref repo.

Evaluation

Download our trained model:

export MODEL_DIR=<model_dir>
curl -L https://www.dropbox.com/sh/7hpw662xylbmi5o/AAC3nfP4xdGAkf0UkFGzAbrja?dl=1 > temp_model.zip
unzip temp_model.zip -d $MODEL_DIR
rm -rf temp_model.zip

and run:

export OUTPUT_DIR=<output_dir>
export CACHE_DIR=<cache_dir>
export MODEL_DIR=<model_dir>
export DATA_DIR=<data_dir>
export SPLIT_FOR_EVAL=<dev or test>

python run_coref.py \
        --output_dir=$OUTPUT_DIR \
        --cache_dir=$CACHE_DIR \
        --model_type=longformer \
        --model_name_or_path=$MODEL_DIR \
        --tokenizer_name=allenai/longformer-large-4096 \
        --config_name=allenai/longformer-large-4096  \
        --train_file=$DATA_DIR/train.english.jsonlines \
        --predict_file=$DATA_DIR/test.english.jsonlines \
        --do_eval \
        --num_train_epochs=129 \
        --logging_steps=500 \
        --save_steps=3000 \
        --eval_steps=1000 \
        --max_seq_length=4096 \
        --train_file_cache=$DATA_DIR/train.english.4096.pkl \
        --predict_file_cache=$DATA_DIR/test.english.4096.pkl \
        --amp \
        --normalise_loss \
        --max_total_seq_len=5000 \
        --experiment_name=eval_model \
        --warmup_steps=5600 \
        --adam_epsilon=1e-6 \
        --head_learning_rate=3e-4 \
        --learning_rate=1e-5 \
        --adam_beta2=0.98 \
        --weight_decay=0.01 \
        --dropout_prob=0.3 \
        --save_if_best \
        --top_lambda=0.4  \
        --tensorboard_dir=$OUTPUT_DIR/tb \
        --conll_path_for_eval=$DATA_DIR/$SPLIT_FOR_EVAL.english.v4_gold_conll

Training

Train a coreference model using:

export OUTPUT_DIR=<output_dir>
export CACHE_DIR=<cache_dir>
export DATA_DIR=<data_dir>

python run_coref.py \
        --output_dir=$OUTPUT_DIR \
        --cache_dir=$CACHE_DIR \
        --model_type=longformer \
        --model_name_or_path=allenai/longformer-large-4096 \
        --tokenizer_name=allenai/longformer-large-4096 \
        --config_name=allenai/longformer-large-4096  \
        --train_file=$DATA_DIR/train.english.jsonlines \
        --predict_file=$DATA_DIR/dev.english.jsonlines \
        --do_train \
        --do_eval \
        --num_train_epochs=129 \
        --logging_steps=500 \
        --save_steps=3000 \
        --eval_steps=1000 \
        --max_seq_length=4096 \
        --train_file_cache=$DATA_DIR/train.english.4096.pkl \
        --predict_file_cache=$DATA_DIR/dev.english.4096.pkl \
        --gradient_accumulation_steps=1 \
        --amp \
        --normalise_loss \
        --max_total_seq_len=5000 \
        --experiment_name="s2e-model" \
        --warmup_steps=5600 \
        --adam_epsilon=1e-6 \
        --head_learning_rate=3e-4 \
        --learning_rate=1e-5 \
        --adam_beta2=0.98 \
        --weight_decay=0.01 \
        --dropout_prob=0.3 \
        --save_if_best \
        --top_lambda=0.4  \
        --tensorboard_dir=$OUTPUT_DIR/tb \
        --conll_path_for_eval=$DATA_DIR/dev.english.v4_gold_conll

To evaluate your trained model on test go here.

Cite

If you use this code in your research, please cite our paper:

@inproceedings{Kirstain2021CoreferenceRW,
  title={Coreference Resolution without Span Representations},
  author={Yuval Kirstain and Ori Ram and Omer Levy},
  booktitle={ACL/IJCNLP},
  year={2021}
}