User equilibrium is a classical problem on the traffic flow assignment in the field of Transportation Engineering, its main idea is: Every driver cannot reduce his travel time by unilaterally change his travel route.
Please refer to User-Equilibrium-Solution.pdf.
We have given an equivalent formulation, which is a convex optimization problem, of finding user equilibrium solution in the traffic flow assignment, with proof of the equivalence. For the equivalent formulation, we have demonstrated the existence and uniqueness of minimizer. Moreover, the variant of Frank-Wolfe Algorithm is introduced for numerically solving the equivalent formulation.
All the things are done within 3 main procedures, implement them in main.py
:
All the data must be introduced into model by the constructor TrafficFlowModel.__init__
.
Invoke TrafficFlowModel.solve
.
Invoke TrafficFlowModel.report
.
Then you can just run $ python main.py
.
TrafficFlowModel._alpha
and TrafficFlowModel._beta
are directly exposed to users, one can revise them if necessary.data.py
.TrafficFlowModel.__str__
(which is already contained in TrafficFlowModel.report
) to print all the current parameters for ensuring all the data having been introduced into model correctly.main.py
, all the most-used methods of TrafficFlowModel
class are given, which are guidelines for the user; and all functions in the repository are more or less with illustrations.link_flow
and path_flow
cannot be neither surjective nor injective, so we cannot mathematically obtain the path_flow
from the link_flow
(no solution, or by Fredholm Alternative infinitely many solution), and need to manually analyze if the solution is of user equilibrium.This sample was provided by Prof. F. Xiao within his lectures at Southwest Jiaotong University, and you can find all the data of this toy sample in data.py
.
LINK | LENGTH | NO. OF LANES | FREE FLOW SPEED | CAPACITY PER LANE |
---|---|---|---|---|
5 - 7 | 10.0 | 2 | 60 | 1800 |
5 - 9 | 10.0 | 2 | 60 | 1800 |
6 - 7 | 10.0 | 2 | 60 | 1800 |
6 - 8 | 14.1 | 2 | 60 | 1800 |
7 - 8 | 10.0 | 2 | 60 | 1800 |
7 - 10 | 10.0 | 2 | 60 | 1800 |
8 - 11 | 10.0 | 2 | 60 | 1800 |
8 - 12 | 14.1 | 2 | 60 | 1800 |
9 - 10 | 10.0 | 2 | 60 | 1800 |
9 - 16 | 22.4 | 2 | 60 | 1800 |
10 - 11 | 10.0 | 2 | 60 | 1800 |
10 - 13 | 10.0 | 2 | 60 | 1800 |
11 - 14 | 10.0 | 2 | 60 | 1800 |
12 - 15 | 10.0 | 2 | 60 | 1800 |
13 - 14 | 10.0 | 2 | 60 | 1800 |
13 - 16 | 10.0 | 2 | 60 | 1800 |
14 - 15 | 10.0 | 2 | 60 | 1800 |
14 - 17 | 10.0 | 2 | 60 | 1800 |
16 - 17 | 10.0 | 2 | 60 | 1800 |
DEMAND | 15 | 17 |
---|---|---|
5 | 6000 | 7500 |
6 | 7500 | 5250 |
# --------------------------------------------------------------------------------
# TRAFFIC FLOW ASSIGN MODEL (USER EQUILIBRIUM)
# FRANK-WOLFE ALGORITHM - PARAMS OF MODEL
# --------------------------------------------------------------------------------
# --------------------------------------------------------------------------------
# LINK Information:
# --------------------------------------------------------------------------------
# 0 : link= ['5', '7'], free time= 10.00, capacity= 3600
# 1 : link= ['5', '9'], free time= 10.00, capacity= 3600
# 2 : link= ['6', '7'], free time= 10.00, capacity= 3600
# 3 : link= ['6', '8'], free time= 14.10, capacity= 3600
# 4 : link= ['7', '8'], free time= 10.00, capacity= 3600
# 5 : link= ['7', '10'], free time= 10.00, capacity= 3600
# 6 : link= ['8', '11'], free time= 10.00, capacity= 3600
# 7 : link= ['8', '12'], free time= 14.10, capacity= 3600
# 8 : link= ['9', '10'], free time= 10.00, capacity= 3600
# 9 : link= ['9', '16'], free time= 22.40, capacity= 3600
# 10 : link= ['10', '11'], free time= 10.00, capacity= 3600
# 11 : link= ['10', '13'], free time= 10.00, capacity= 3600
# 12 : link= ['11', '14'], free time= 10.00, capacity= 3600
# 13 : link= ['12', '15'], free time= 10.00, capacity= 3600
# 14 : link= ['13', '14'], free time= 10.00, capacity= 3600
# 15 : link= ['13', '16'], free time= 10.00, capacity= 3600
# 16 : link= ['14', '15'], free time= 10.00, capacity= 3600
# 17 : link= ['14', '17'], free time= 10.00, capacity= 3600
# 18 : link= ['16', '17'], free time= 10.00, capacity= 3600
# --------------------------------------------------------------------------------
# OD Pairs Information:
# --------------------------------------------------------------------------------
# 0 : OD pair= ['5', '15'], demand= 6000
# 1 : OD pair= ['5', '17'], demand= 6750
# 2 : OD pair= ['6', '15'], demand= 7500
# 3 : OD pair= ['6', '17'], demand= 5250
# --------------------------------------------------------------------------------
# Path Information:
# --------------------------------------------------------------------------------
# 0 : Conjugated OD pair= 0, Path= ['5', '7', '8', '11', '14', '15']
# 1 : Conjugated OD pair= 0, Path= ['5', '7', '8', '12', '15']
# 2 : Conjugated OD pair= 0, Path= ['5', '7', '10', '11', '14', '15']
# 3 : Conjugated OD pair= 0, Path= ['5', '7', '10', '13', '14', '15']
# 4 : Conjugated OD pair= 0, Path= ['5', '9', '10', '11', '14', '15']
# 5 : Conjugated OD pair= 0, Path= ['5', '9', '10', '13', '14', '15']
# 6 : Conjugated OD pair= 1, Path= ['5', '7', '8', '11', '14', '17']
# 7 : Conjugated OD pair= 1, Path= ['5', '7', '10', '11', '14', '17']
# 8 : Conjugated OD pair= 1, Path= ['5', '7', '10', '13', '14', '17']
# 9 : Conjugated OD pair= 1, Path= ['5', '7', '10', '13', '16', '17']
# 10 : Conjugated OD pair= 1, Path= ['5', '9', '10', '11', '14', '17']
# 11 : Conjugated OD pair= 1, Path= ['5', '9', '10', '13', '14', '17']
# 12 : Conjugated OD pair= 1, Path= ['5', '9', '10', '13', '16', '17']
# 13 : Conjugated OD pair= 1, Path= ['5', '9', '16', '17']
# 14 : Conjugated OD pair= 2, Path= ['6', '7', '8', '11', '14', '15']
# 15 : Conjugated OD pair= 2, Path= ['6', '7', '8', '12', '15']
# 16 : Conjugated OD pair= 2, Path= ['6', '7', '10', '11', '14', '15']
# 17 : Conjugated OD pair= 2, Path= ['6', '7', '10', '13', '14', '15']
# 18 : Conjugated OD pair= 2, Path= ['6', '8', '11', '14', '15']
# 19 : Conjugated OD pair= 2, Path= ['6', '8', '12', '15']
# 20 : Conjugated OD pair= 3, Path= ['6', '7', '8', '11', '14', '17']
# 21 : Conjugated OD pair= 3, Path= ['6', '7', '10', '11', '14', '17']
# 22 : Conjugated OD pair= 3, Path= ['6', '7', '10', '13', '14', '17']
# 23 : Conjugated OD pair= 3, Path= ['6', '7', '10', '13', '16', '17']
# 24 : Conjugated OD pair= 3, Path= ['6', '8', '11', '14', '17']
# --------------------------------------------------------------------------------
# Link - Path Incidence Matrix:
# --------------------------------------------------------------------------------
# [[1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
# [0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0]
# [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0]
# [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1]
# [1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0]
# [0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0]
# [1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1]
# [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0]
# [0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0]
# [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
# [0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0]
# [0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0]
# [1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 1 0 1 0 1 1 0 0 1]
# [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0]
# [0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0]
# [0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0]
# [1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0]
# [0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1]
# [0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0]]
# --------------------------------------------------------------------------------
# TRAFFIC FLOW ASSIGN MODEL (USER EQUILIBRIUM)
# FRANK-WOLFE ALGORITHM - REPORT OF SOLUTION
# --------------------------------------------------------------------------------
# --------------------------------------------------------------------------------
# TIMES OF ITERATION : 1199
# --------------------------------------------------------------------------------
# --------------------------------------------------------------------------------
# PERFORMANCE OF LINKS
# --------------------------------------------------------------------------------
# 0 : link= ['5', '7'], flow= 5632.68, time= 18.99, v/c= 1.565
# 1 : link= ['5', '9'], flow= 7117.32, time= 32.92, v/c= 1.977
# 2 : link= ['6', '7'], flow= 6048.31, time= 21.95, v/c= 1.680
# 3 : link= ['6', '8'], flow= 6701.69, time= 39.50, v/c= 1.862
# 4 : link= ['7', '8'], flow= 5392.05, time= 17.55, v/c= 1.498
# 5 : link= ['7', '10'], flow= 6288.95, time= 23.97, v/c= 1.747
# 6 : link= ['8', '11'], flow= 5191.43, time= 16.49, v/c= 1.442
# 7 : link= ['8', '12'], flow= 6902.30, time= 42.68, v/c= 1.917
# 8 : link= ['9', '10'], flow= 1481.14, time= 10.04, v/c= 0.411
# 9 : link= ['9', '16'], flow= 5636.18, time= 42.59, v/c= 1.566
# 10 : link= ['10', '11'], flow= 1648.04, time= 10.07, v/c= 0.458
# 11 : link= ['10', '13'], flow= 6122.05, time= 22.54, v/c= 1.701
# 12 : link= ['11', '14'], flow= 6839.47, time= 29.54, v/c= 1.900
# 13 : link= ['12', '15'], flow= 6902.30, time= 30.27, v/c= 1.917
# 14 : link= ['13', '14'], flow= 5303.10, time= 17.06, v/c= 1.473
# 15 : link= ['13', '16'], flow= 818.95, time= 10.00, v/c= 0.227
# 16 : link= ['14', '15'], flow= 6597.70, time= 26.92, v/c= 1.833
# 17 : link= ['14', '17'], flow= 5544.87, time= 18.44, v/c= 1.540
# 18 : link= ['16', '17'], flow= 6455.13, time= 25.51, v/c= 1.793
# --------------------------------------------------------------------------------
# PERFORMANCE OF PATHS (GROUP BY ORIGIN-DESTINATION PAIR)
# --------------------------------------------------------------------------------
# 0 : group= 0, time= 109.49, path= ['5', '7', '8', '11', '14', '15']
# 1 : group= 0, time= 109.49, path= ['5', '7', '8', '12', '15']
# 2 : group= 0, time= 109.49, path= ['5', '7', '10', '11', '14', '15']
# 3 : group= 0, time= 109.49, path= ['5', '7', '10', '13', '14', '15']
# 4 : group= 0, time= 109.49, path= ['5', '9', '10', '11', '14', '15']
# 5 : group= 0, time= 109.49, path= ['5', '9', '10', '13', '14', '15']
# 6 : group= 1, time= 101.01, path= ['5', '7', '8', '11', '14', '17']
# 7 : group= 1, time= 101.01, path= ['5', '7', '10', '11', '14', '17']
# 8 : group= 1, time= 101.01, path= ['5', '7', '10', '13', '14', '17']
# 9 : group= 1, time= 101.01, path= ['5', '7', '10', '13', '16', '17']
# 10 : group= 1, time= 101.01, path= ['5', '9', '10', '11', '14', '17']
# 11 : group= 1, time= 101.01, path= ['5', '9', '10', '13', '14', '17']
# 12 : group= 1, time= 101.01, path= ['5', '9', '10', '13', '16', '17']
# 13 : group= 1, time= 101.01, path= ['5', '9', '16', '17']
# 14 : group= 2, time= 112.45, path= ['6', '7', '8', '11', '14', '15']
# 15 : group= 2, time= 112.45, path= ['6', '7', '8', '12', '15']
# 16 : group= 2, time= 112.45, path= ['6', '7', '10', '11', '14', '15']
# 17 : group= 2, time= 112.45, path= ['6', '7', '10', '13', '14', '15']
# 18 : group= 2, time= 112.45, path= ['6', '8', '11', '14', '15']
# 19 : group= 2, time= 112.45, path= ['6', '8', '12', '15']
# 20 : group= 3, time= 103.97, path= ['6', '7', '8', '11', '14', '17']
# 21 : group= 3, time= 103.97, path= ['6', '7', '10', '11', '14', '17']
# 22 : group= 3, time= 103.97, path= ['6', '7', '10', '13', '14', '17']
# 23 : group= 3, time= 103.98, path= ['6', '7', '10', '13', '16', '17']
# 24 : group= 3, time= 103.97, path= ['6', '8', '11', '14', '17']