yzhou359 / VisemeNet_tensorflow

GNU General Public License v3.0
191 stars 59 forks source link

VisemeNet Code Readme

Environment

Python Package

Input/Output

JALI Viseme Annotation Dataset

At test time:

  1. Create and install required envs and packages
    
    conda create -n visnet python=3.5

take care of your OS and python version, here is a Linux-64bit with Python3.5 link

pip install --ignore-installed --upgrade https://download.tensorflow.google.cn/linux/gpu/tensorflow_gpu-1.1.0-cp35-cp35m-linux_x86_64.whl

pip install PYTHON_PACKAGE_REQUIRED

2. **Download this repository to your local machine:**  

git clone https://github.com/yzhou359/VisemeNet_tensorflow.git

cd VisemeNet_tensorflow

3. **Prepare data and model:**  
   * convert your test audio files into WAV format, put it to the directory data/test_audio/   
   * download the public face rig model from [HERE](https://www.dropbox.com/sh/7nbqgwv0zz8pbk9/AAAghy76GVYDLqPKdANcyDuba?dl=0), put all 4 files to data/ckpt/pretrain_biwi/  

4. **Forward inference:**  
   * put your test audio file name in file 'main_test.py', line 7. 
   * Then run command line

python main_test.py

   The result locates at:  

data/output_viseme/[your_audio_file_name]/mayaparam_viseme.txt


5. **JALI animation in Maya:**
   * put your test audio file name in file 'maya_animation.py', line 4.
   * Then run 'maya_animation.py' in Maya with JALI environment to create talking face animation automatically. (If using different version of JALI face rig, the name of phoneme/co-articulation variable might varies.)
   * UPDATE: 'maya_animation.py' has been updated with the [public face rig](http://www.dgp.toronto.edu/~elf/jali.html) annotations. Feel free to play with it!