conda create -n visnet python=3.5
pip install --ignore-installed --upgrade https://download.tensorflow.google.cn/linux/gpu/tensorflow_gpu-1.1.0-cp35-cp35m-linux_x86_64.whl
pip install PYTHON_PACKAGE_REQUIRED
2. **Download this repository to your local machine:**
git clone https://github.com/yzhou359/VisemeNet_tensorflow.git
cd VisemeNet_tensorflow
3. **Prepare data and model:**
* convert your test audio files into WAV format, put it to the directory data/test_audio/
* download the public face rig model from [HERE](https://www.dropbox.com/sh/7nbqgwv0zz8pbk9/AAAghy76GVYDLqPKdANcyDuba?dl=0), put all 4 files to data/ckpt/pretrain_biwi/
4. **Forward inference:**
* put your test audio file name in file 'main_test.py', line 7.
* Then run command line
python main_test.py
The result locates at:
data/output_viseme/[your_audio_file_name]/mayaparam_viseme.txt
5. **JALI animation in Maya:**
* put your test audio file name in file 'maya_animation.py', line 4.
* Then run 'maya_animation.py' in Maya with JALI environment to create talking face animation automatically. (If using different version of JALI face rig, the name of phoneme/co-articulation variable might varies.)
* UPDATE: 'maya_animation.py' has been updated with the [public face rig](http://www.dgp.toronto.edu/~elf/jali.html) annotations. Feel free to play with it!