Pytorch implementation of NeurIPS'22 paper "Hierarchical Graph Transformer with Adaptive Node Sampling"(https://arxiv.org/abs/2210.03930)
The preliminary version of our code: https://github.com/zaixizhang/Graph_Transformer
conda create -n gt python=3.9
conda activate gt
conda install pytorch=1.10 torchvision torchaudio -c pytorch -c nvidia
conda install pyg=2.0.4 -c pyg -c conda-forge
pip install ogb
pip install pygsp
pip install scipy
conda clean --all
conda activate gt
python3 preprocess_data.py
sh start.sh
As for larger dataset preprocessing, consider using preprocess_data_large.py. The graph coarsening is not used in preprocess_data_large.py due to its instability.
If you find this work useful, please cite our paper:
@article{zhang2022hierarchical,
title={Hierarchical Graph Transformer with Adaptive Node Sampling},
author={Zhang, Zaixi and Liu, Qi and Hu, Qingyong and Lee, Chee-Kong},
journal={arXiv preprint arXiv:2210.03930},
year={2022}
}