zehao-dong / CktGNN

Open Circuit Benchmark OCB and source code for CktGNN (https://openreview.net/forum?id=NE2911Kq1sp).
MIT License
45 stars 11 forks source link

CktGNN

CktGNN is a two-level GNN model with a pre-designed subgraph basis for the analog circuit (DAG) encoding. CktGNN simultaneously optimizes circuit topology and device features, achieving state-of-art performance in analog circuit optimization.
For more information, please check our ICLR 2023 paper: 'CktGNN: Circuit Graph Neural Network for Electronic Design Automation' (https://openreview.net/forum?id=NE2911Kq1sp).

OCB: Open Circuit Benchmark

Environment

Experiments on Ckt-Bench-101

python main.py --epochs 300 --save-appendix _cktgnn --model CktGNN --hs 301

User can select different models (e.g. DVAE, DAGNN ..) and uses the corresponding save appendix (e.g. --save-appendix _dvae, --save-appendix _dagnn ) to store the results.

python sgp_regression.py --checkpoint 300 --save-appendix _cktgnn --model CktGNN --hs 301

Make sure that --save-appendix --model --hs are consistent with previous experiment, and set --checkpoint equals to the --epoch.

Experiments on Ckt-Bench-301

First, run python inference.py --checkpoint 300 --save-appendix _cktgnn --model CktGNN --hs 301 to generate the embeddings in the latent space (by the selected circuit encoder).

Second, run python bo_search.py --save-appendix _cktgnn --model CktGNN --search-method bo to search the optimal circuit in Ckt-Bench-301. Expctation improvement searching is used, and users can use --search-method to choose the Byesian optimization model (bo = Bohamiann, dngo = DNGO).

Please leave an issue if you have any trouble running the code or suggestions for improvements.

Reference

If you find OCB and the source code are useful, please cite our paper.

@article{dong2023cktgnn,
title={CktGNN: Circuit Graph Neural Network for Electronic Design Automation},
author={Dong, Zehao and Cao, Weidong and Zhang, Muhan and Tao, Dacheng and Chen, Yixin and Zhang, Xuan},
journal={arXiv preprint arXiv:2308.16406},
year={2023}
}

Zehao Dong, Washington University in St. Louis

zehao.dong@wustl.edu

Aug 31 2023