Often application can be split into two parts declarative models (DSLs) and imperative interpreter (engines).
Models can be expressed with data - Data DSLs. Why? Because data is easily composable, regular and introspectable.
There are a lot of successful Data DSLs in clojure ecosystem. But often they do not play together :(.
Zen is a framework to unify Data DSLs, make them composable and take model driven design to the next level.
Zen separate models source code from interpreters code, but keep it in source path using same layout as clojure.
Models are grouped into namespaces and namespaces are stored in edn files.
Namespaces can be published as reusable packages.
Each namespace contains one or multiple models described with data.
Namespace is a map (in terms of edn) with two special symbol keys - 'ns and 'import
ns
- defines name of namespaceimports
- imported namespacesNamespaces may refer other namespaces by imports
.
Core zen
namespace is imported implicitly.
That's how starting from one entry point namespace, your project can import only used modules and models from other packages.
Rest of symbolic keys in namespace define models.
Just like in clojure namespace you may refer one model from another located in one namespace
by short name (symbol
) and refer between namespaces by full name - (namespace.name/symbol
)
Example namespace:
{ns myapp.module ;; namespace name
imports #{http pg model auth} ;; imports - TODO: think about aliases
db
{:zen/tags #{pg/config}
:connection {:host "..." :port "..."}
:storages #{model/patient-store}}
;; model
web
{:zen/tags #{http/server} ;; tags set
:port 8080
:workers 8
:db db
:apis #{api http/admin-api}}
api
{:zen/tags #{http/api}
:zen/desc "API definition"
:middleware [{:type http/cors :allow #{"https://myapp.io"}}
{:type auth/authorize}]
:routes {
"Patient" {:post {:op create-pt}
:get {:op search-pt}}
"meta" {:get {:op http/meta}}}}
create-pt
{:zen/tags #{http/create}
:operation http/create
:schemas #{model/patient}
:response {
201 {:confirms #{model/patient}}
422 {:confirms #{http/error}}}}
search-pt
{:zen/tags #{http/search}
:operation http/search
:store #{model/patient-store}
:params {:query {:name {:zen/desc "Search by name"
:engine http/fhir-search-param
:type "string" :expression "Patient.name"}
:ilike {:engine http/sql-search-param
:query "resource::text ilike {{param.value}}"}}}
:response {
201 {:confirms #{model/search-bundle}}
422 {:confirms #{model/search-errors}}}}}
Instead of introducing any kind of types and type hierarchies, zen uses tag system to classify models.
You may think about tag system as non-hierarchical multidimensional classification (just like java interfaces). Or as a function of meta store - get all models labeled with specific tag.
Model project may be loaded into store. You start loading from entry point namespace. All imports will be resolved, validated and loaded into store.
Store functions:
ns/sym
tag/name
my/ns
Some data can be moved from edn to envs using special readers:
Before reading with envs - zen context should be initialized with envs: (zen.core/new-context {:env {:ENV_NAME "env-value"}}))
or system env variables should be set - export MY_VAR='value'
.
{ns test-env
schema
{:zen/tags #{zen/schema zen/tag}
:type zen/map
:keys {:string {:type zen/string}
:int {:type zen/integer}
:sym {:type zen/symbol}
:key {:type zen/keyword}
:num {:type zen/number}
:bool {:type zen/boolean}}}
model
{:zen/tags #{schema }
:string #env ESTR
:int #env-integer EINT
:sym #env-symbol ESYM
:key #env-keyword EKEY
:num #env-number ENUM}
:bool #env-boolean BOOL
;; or with defaults
:string #env [ESTR "Default"]
}
Zen has built-in schema engine deeply integrated with meta-store.
The key features of zen/schema is:
{ns myapp
Contact
{:zen/tags #{zen/schema}
:type zen/map
:keys
{:system {:type zen/string
:enum [{:value "phone"}
{:value "email"}]
:value {:type zen/string}}}
Contactable
{:zen/tags #{zen/schema}
:type zen/map
:keys {:contacts {:type zen/vector
:every {:type map :confirms #{Contact}}}}}
User
{:zen/tags #{zen/schema}
:type zen/map
:confirms #{Contactable}
:require #{:id :email}
:keys {
:id {:type zen/string}
:email {:type zen/string :regex ".*@.*"}
:password {:type zen/string }}}
;; example of property schema
human-name
{:zen/tags #{zen/property zen/schema}
:type zen/map
:keys {:family {:type zen/string}
:given {:type zen/vector :every {:type zen/string}}}}}
instance
{:id "niquola"
:myapp/human-name {:given ["Nikolai"] :family "Ryzhikov"}
:password "secret"}
Schema statements are described with maps.
Map may have a :type key, which defines how this
map is interpreted. For example :type zen/string
will check for string, zen/map describes map validation.
Here is list of built-in types:
You can get all schema types by query meta-store for zen/type tag. User can extend schema with new types - TBD
All schema maps may have common a keys:
:confirms
- set of other schemas to confirm (this is not inheritance!):enum
- polymorphic enumeration of possible values (TODO: think about terminology - reference semantic?):constant
- polymorphic fixed value validation:valuesets
- like enum, but using valueset zen protocol (TBD)Depending on type schema map may have type specific keys. For example :minLength and :regex for zen/string or :keys for zen/map.
zen/case
is alternative to union type,
it is more advanced and may be applied to different maps
path
{:zen/tags #{'zen/schema}
:type 'zen/vector
:every
{:type 'zen/case
:case [{:when {:type 'zen/string}}
{:when {:type 'zen/map}
:then {:type 'zen/map
:require #{:name}
:keys {:name {:type 'zen/string}}}}]}}
For example zen/map
type defines following validation keys:
:values
schema - schema to apply to all values:keys
{ key: schema } - enumeration of keys and schema for each key:require
#{:key,...} - list of required keys in map:schema-key
{:key :some-key } - key to resolve schema from data on flyApply clojure.spec regular expressions for collections!!!!