zhangpur / SR-LSTM

States Refinement LSTM
MIT License
116 stars 36 forks source link

SR-LSTM

States Refinement LSTM\ This is the code for SR-LSTM: State Refinement for LSTM towards Pedestrian Trajectory Prediction. CVPR2019

Environment

The code is tested on Ubuntu 16.04, Python 3.5, numpy 1.13, pytorch 1.0.1.post2.

Train

The Default settings are to train on ETH-univ. Data cache and models will be in the subdirectory "./savedata/0/".

python .../SRLSTM/train.py

Configuration files are also created after the first run, arguments could be modified through configuration files. \ Priority: command line > configuration files > default values in script

The datasets are selected on arguments '--test_set'. Five datasets in ETH/UCY are corresponding to the value of [0,1,2,3,4].

This command is to train model for ETH-hotel and save cache files in '/Your/save/directory/1'.

python .../SRLSTM/train.py --test_set 1 --save_base_dir '/Your/save/directory'

You can set your model name by "--train_model" and model type by "--model".

Detailed arguments description is given in train.py.

Test

python .../SRLSTM/train.py --phase test --test_set X --load_model XXX

Test example models are given in ./savedata/X/testmodel/testmodel_XXX.tar\ To test on UCY-univ, using

python .../SRLSTM/train.py --phase test --test_set 4 --load_model 324 --batch_around_ped 64

To test on your own models, use your train.py and change the arguments of '--phase', '--train_model','--load_model' to 'test','YourModelName','YourModelEpoch'.

Citation

If you find this code useful, please cite us as

@inproceedings{zhang2019srlstm,
  title={SR-LSTM: State Refinement for LSTM towards Pedestrian Trajectory Prediction},
  author={Zhang, Pu and Ouyang, Wanli and Zhang, Pengfei and Xue, Jianru and Zheng, Nanning},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2019}
}