zhengli97 / Awesome-Prompt-Adapter-Learning-for-VLMs

A curated list of awesome prompt/adapter learning methods for vision-language models like CLIP.
Apache License 2.0
301 stars 13 forks source link
adapter-learning few-shot-classifcation few-shot-learning paper-list prompt-learning vision-language-model zero-shot-learning

Awesome-Prompt-Adapter-Learning-for-VLMs

A curated list of prompt/adapter learning methods for vision-language models (e.g., CLIP).

Table of Contents

💡Tips:

Keywords

Use text-based prompts/adapters.

Use image-based prompts/adapters.

Use text- and image-based prompts/adapters.

Surveys

General Prompt Learning

Experimental Comparison

Base-to-Novel Generalization. (ViT-B/16 CLIP)

Methods Pub Base Novel HM (main) Code
CLIP ICML 21 69.34 74.22 71.70 Link
CoOp IJCV 22 82.69 63.22 71.66 Link
CoCoOp CVPR 22 80.47 71.69 75.83 Link
ProDA CVPR 22 81.56 72.30 76.65 Link
KgCoOp CVPR 23 80.73 73.60 77.00 Link
RPO ICCV 23 81.13 75.00 77.78 Link
MaPLe CVPR 23 82.28 75.14 78.55 Link
DePT CVPR 24 83.62 75.04 79.10 Link
TCP CVPR 24 84.13 75.36 79.51 Link
MMA CVPR 24 83.20 76.80 79.87 Link
PromptSRC ICCV 23 84.26 76.10 79.97 Link
HPT AAAI 24 84.32 76.86 80.23 Link
CoPrompt ICLR 24 84.00 77.23 80.48 Link
CasPL ECCV 24 86.11 79.54 82.69 Link
PromptKD CVPR 24 86.96 80.73 83.73 Link

Table 1. Average results on 11 datasets. (Only works with open-source code will be listed.)

Paper List

2022

2023

2024

Another form of Prompt

Paper List

General Test-time Prompt Learning

Experimental Comparison

Methods Pub ImageNet -A -V2 -R -S Avg. (main) Code
CoOp IJCV 22 71.51 49.71 64.20 75.21 47.99 59.28 Link
CoCoOp CVPR 22 71.02 50.63 64.07 76.18 48.75 59.91 Link
TPT NeurIPS 22 68.98 54.77 63.45 77.06 47.94 60.81 Link
TPT+CoOp NeurIPS 22 73.61 57.95 66.83 77.27 49.29 62.84 Link
PromptAlign NeurIPS 23 --- 59.37 65.29 79.33 59.37 63.55 Link
TPS+CoOp Arxiv 24 73.73 60.49 66.84 77.44 49.08 65.52 Link
RLCF ICLR 24 73.23 65.45 69.77 83.35 54.74 68.33 Link
RLCF+CoOp ICLR 24 76.05 69.74 70.62 84.51 56.49 70.34 Link

Table 2. Test-time prompt tuning methods on OOD data.

Paper List

General Adapter Learning

Paper List

Video Understanding

Prompt Learning

Continual Learning

Prompt Learning

Adapter Learning