The official repo for [MIDL'23 Oral] "Inherent Consistent Learning for Accurate Semi-supervised Medical Image Segmentation"
We propose a novel Inherent Consistent Learning (ICL) method, which aims to learn robust semantic category representations through the semantic consistency guidance of labeled and unlabeled data to help segmentation.
cd code
# For 2D experiments (unet-based)
python train_inherent_consistent_unet_2D.py --root_path ..data/ACDC --exp ACDC/Unet_ICL --num_classes 4 --labeled_num 3/7
# For 2D experiments (swinunet-based)
python train_inherent_consistent_swinunet_2D.py --root_path ..data/ACDC --exp ACDC/Swin_ICL --num_classes 4 --labeled_num 3/7
# For 3D experiments on BraTS (3d unet-based)
python train_inherent_consistent_unet_3D_BraTS.py --root_path ..data/BraTS19 --exp BraTS19/Unet_ICL --num_classes 2 --labeled_num 25/50 --use_ssl_pretrained
# For 3D experiments on BraTS (3d swinunetr-based)
python train_inherent_consistent_swinunetr_3D_BraTS.py --root_path ..data/BraTS19 --exp BraTS19/Unet_ICL --num_classes 2 --labeled_num 25/50 --use_ssl_pretrained
# For 3D experiments on AMOS (3d unet-based)
python train_inherent_consistent_unet_3D_AMOS22.py --root_path ..data/AMOS --exp AMOS/Unet_ICL --num_classes 16 --labeled_num 15 --val_num 30
python test_2D_ACDC.py / test_3D_AMOS.py / test_3D_BraTS
Our code is origin from SSL4MIS. We are grateful to these authors for their valuable contributions, and I am hopeful that our newly proposed method can also contribute to advancing related Semi-supervised Learning research.