zhy0321 / TG-Pose

TG-Pose: Delving into Topology and Geometry for Category-level Object Pose Estimation
MIT License
3 stars 0 forks source link

TG-Pose (TMM 2024)

Pytorch implementation of TG-Pose: Delving into Topology and Geometry for Category-level Object Pose Estimation. (Paper, Project)

Required environment

Data Preparation

To generate your own dataset, use the data preprocess code provided in this git. Download the detection results in this git. Change the dataset_dir and detection_dir to your own path.

Since the handle visibility labels are not provided in the original NOCS REAL275 train set, please put the handle visibility file ./mug_handle.pkl under YOUR_NOCS_DIR/Real/train/ folder. The mug_handle.pkl is mannually labeled and originally provided by the GPV-Pose.

Training

python -m engine.train --loss_list='TDA_loss' --run_stage='RL_TDA' --dataset_dir YOUR_DATA_DIR --model_save SAVE_DIR

Detailed configurations are in config/config.py.

Evaluation

python -m evaluation.evaluate --dataset_dir YOUR_DATA_DIR --detection_dir DETECTION_DIR --resume 1 --resume_model MODEL_PATH --model_save SAVE_DIR
Metrics IoU25 IoU50 IoU75 5d2cm 5d5cm 10d2cm 10d5cm 10d10cm
Scores 84.3 82.6 76.2 49.8 59.0 71.7 86.6 87.7

Citation

Cite us if you found this work useful.

@article{zhan2024tg,
  title={TG-Pose: Delving into Topology and Geometry for Category-level Object Pose Estimation},
  author={Zhan, Yue and Wang, Xin and Nie, Lang and Zhao, Yang and Yang, Tangwen and Ruan, Qiuqi},
  journal={IEEE Transactions on Multimedia},
  year={2024},
  publisher={IEEE}
}