Pytorch implementation of TG-Pose: Delving into Topology and Geometry for Category-level Object Pose Estimation. (Paper, Project)
To generate your own dataset, use the data preprocess code provided in this git. Download the detection results in this git. Change the dataset_dir
and detection_dir
to your own path.
Since the handle visibility labels are not provided in the original NOCS REAL275 train set, please put the handle visibility file ./mug_handle.pkl
under YOUR_NOCS_DIR/Real/train/
folder. The mug_handle.pkl
is mannually labeled and originally provided by the GPV-Pose.
python -m engine.train --loss_list='TDA_loss' --run_stage='RL_TDA' --dataset_dir YOUR_DATA_DIR --model_save SAVE_DIR
Detailed configurations are in config/config.py
.
python -m evaluation.evaluate --dataset_dir YOUR_DATA_DIR --detection_dir DETECTION_DIR --resume 1 --resume_model MODEL_PATH --model_save SAVE_DIR
Metrics | IoU25 | IoU50 | IoU75 | 5d2cm | 5d5cm | 10d2cm | 10d5cm | 10d10cm |
---|---|---|---|---|---|---|---|---|
Scores | 84.3 | 82.6 | 76.2 | 49.8 | 59.0 | 71.7 | 86.6 | 87.7 |
Cite us if you found this work useful.
@article{zhan2024tg,
title={TG-Pose: Delving into Topology and Geometry for Category-level Object Pose Estimation},
author={Zhan, Yue and Wang, Xin and Nie, Lang and Zhao, Yang and Yang, Tangwen and Ruan, Qiuqi},
journal={IEEE Transactions on Multimedia},
year={2024},
publisher={IEEE}
}