zoometh / neonet

R Shiny app for selection and display of the NeoNet radiocarbon dataset
GNU General Public License v3.0
2 stars 1 forks source link
leaflet open-data open-source radiocarbon-calibration radiocarbon-dates rproject shiny-apps

NeoNet

Thomas Huet, Niccolò Mazzucco, Miriam Cubas Morera, Juan Gibaja, F. Xavier Oms, António Faustino Carvalho, Ana Catarina Basilio, Elías López-Romero

NeoNet serves as a framework to study the transition from the Late Mesolithic to the Early Neolithic through spatio-temporal modeling of radiocarbon dates and by offering:

  1. curated datasets
  2. interactive app
  3. R functions


img-name img-name
Neonet radiocarbon datasets: "NeoNet Med" (North-Central Mediterranean, location) and "NeoNet Atl" (European South Atlantic river basin, location), here filtered by periods.

Studied periods are listed in the periods.tsv table:

period period_full_name color
EM Early Mesolithic #0000CF
MM Middle Mesolithic #1D1DFF
LM Late Mesolithic #3737FF
LMEN Late Mesolithic/Early Neolithic #6A6AFF
UM Undefined Mesolithic #8484FF
EN Early Neolithic #FF1B1B
EMN Early/Middle Neolithic #FF541B
MN Middle Neolithic #FF8D1B
LN Late Neolithic #FFC04D
UN Undefined Neolithic #E7E700

NeoNet datasets

| Med | Atl | |------ |----- | | [id00140_doc_elencoc14.tsv](https://github.com/zoometh/neonet/blob/main/inst/extdata/id00140_doc_elencoc14.tsv) | [id00164_doc_elencoc14.tsv](https://github.com/zoometh/neonet/blob/main/inst/extdata/id00164_doc_elencoc14.tsv) | | img-name | img-name |

These datasets are harvested by the c14bazAAR package, functions get_c14data("neonet") and get_c14data("neonetatl")

NeoNet app
mapping the Late Mesolithic/Early Neolithic transition

NeoNet app is an R Shiny application for mapping radiocarbon (C14). The application offers a mobile geographic window for date selection by location, various filters on chronology and date quality, a calibration window, and other tools to create a user-friendly interface supported by curated datasets of radiocarbon dates and archaeological contexts. NeoNet app is hosted on the server of the University of Pisa. This NeoNet app uses this radiocarbon dataset: https://doi.org/10.13131/archelogicadata-yb11-yb66 published as a data paper in the Journal of Open Archaeology Data and describe in this web document.

NeoNet app

NeoNet app dev

TODO

NeoNet functions
radiocarbon management

NeoNet functions enable the handling of radiocarbon dates sourced from the dataset or exported from the interactive app. Current functions cover:

Data

Data preparation

Starting by running these neo_*() functions to manage a new XLSX dataset. Sourcing functions:

source("R/neo_subset.R")
source("R/neo_bib.R")
source("R/neo_matlife.R")
source("R/neo_calib.R")
source("R/neo_merge.R")
source("R/neo_html.R")
source("R/neo_datamiss.R")
source("R/neo_datasum.R")
source("R/neo_doi.R")

Read the new dataset and bibliographic file

data.c14 <- paste0(getwd(), "/inst/extdata/", "NeoNet_atl_ELR (1).xlsx")
df.bib <- paste0(getwd(), "/inst/extdata/", "NeoNet_atl_ELR.bib")

Cleaning the dataset and making it conform to the published NeoNet dataset

df.c14 <- openxlsx::read.xlsx(data.c14)
df.c14 <- neo_subset(df.c14,
                     rm.C14Age = TRUE,
                     rm.Spatial = FALSE,
                     rm.Period = FALSE)
df.c14 <- neo_calib(df.c14)
neo_doi(df.c14)

Prepare the dataset for the Shiny application by merging it with NeoNet Med, calculating materil life duration, and HTML popup layouts

df.c14 <- neo_merge(df.c14 = df.c14, 
                    data.bib = data.bib, 
                    merge.bib = F)
df.c14 <- neo_matlife(df.c14)
df.c14 <- neo_html(df.c14)

Export the merged dataset

write.table(df.c14, "C:/Rprojects/neonet/R/app-dev/c14_dataset_med_x_atl.tsv",
            sep = "\t",
            row.names = FALSE)

Data report

Calculate basic statistics

neo_datasum(df.c14)

Calculate basic statistics: missing data

neo_datamiss(df.c14)


img-name
Missing data (empty cells)

Data alignment

Retrieve dates coming from other databases (with the c14bazAAR R package) and mapped to be compliant with the Neonet format (..., LM, EN, ...) and functions, using neo_dbs_parse(), a mapping table (XLSX) created with neo_dbs_create_ref(), and neo_dbs_align():

source("R/neo_dbs_parse.R")
source("R/neo_dbs_align.R")

# spatial and chronological limits
where <- sf::st_read("https://raw.githubusercontent.com/zoometh/neonet/main/doc/talks/2024-simep/roi.geojson", quiet = TRUE)
when <- c(-9000, -4000) # in cal BC

# parameters
l.dbs <- c("calpal", "medafricarbon", "agrichange", "bda", "calpal", "radon", "katsianis") 
col.c14baz <- c("sourcedb", "site", "labnr", "c14age", "c14std", "period", "culture", "lon", "lat")

# collect the dates form different DBs, standardize the cultural period layout, filter on 'when' and 'where'
df <- neo_dbs_parse(l.dbs = l.dbs,
                    chr.interval.uncalBC = when, 
                    roi = where,
                    col.c14baz = col.c14baz)
df.c14 <- neo_dbs_align(df,
                        mapping.file = "C:/Rprojects/neonet/doc/ref_table_per.xlsx")

Alignments are done using the mapping file ref_table_per.xlsx, a default parameter in neo_dbs_align().

Mapping file

The XLSX file ref_table_per.xlsx has been created using:

df <- neo_dbs_parse(l.dbs = l.dbs,
                    chr.interval.uncalBC = when, 
                    roi = where,
                    col.c14baz = col.c14baz)

# create the mapping file
neo_dbs_create_ref(df.all.res = df,
                   root.path = "C:/Rprojects/neonet/results",
                   outFile = "df_ref_per.xlsx")

This mapping file ref_table_per.xlsx is a reference table to map cultural assessment coming from external DBs, collected throug c14bazAAR, to the Neonet one (..., LM, EN, ...) format. This XLSX file has to be updated manually by specialists.


img-name
Equivalences between third part databases cultural assessment (columns 'period' and 'culture') and Neonet classes (column 'class')

For example:

df.c14 <- neo_dbs_align(df,
                        mapping.file = "C:/Rprojects/neonet/doc/ref_table_per.xlsx")
head(df.c14)

Gives a dataframe where all fields have been renamed to be parsed with the Neonet functions. Among this mapping the column 'Period' with, for example, MM Middle Mesolithic) maps the bda period = Mésolithique 1 and culture = Capsien ancien or Capsien typique (columns 'db_period' and 'db_culture'):

sourcedb SiteName LabCode C14Age C14SD db_period db_culture Period lon lat
bda Mechta el Arbi Poz-92231 6600 80 Mésolithique 1 Capsien ancien MM 6.130900 36.09940
bda Mechta el Arbi Poz-92232 6250 130 Mésolithique 1 Capsien ancien MM 6.130900 36.09940
bda Mechta el Arbi Poz-92230 3500 120 Mésolithique 1 Capsien ancien MM 6.130900 36.09940
bda Kef Zoura D UOC-2925 7787 48 Mésolithique 1 Capsien typique MM 7.682121 35.04205
bda Bortal Fakher L-240A 6930 200 Mésolithique 1 Capsien typique MM 8.176087 34.35480
bda Relilaï (B) Gif-1714 7760 180 Mésolithique 1 Capsien typique MM 7.694694 35.04480

Outlier dates

To filter aberrant dates, a combination of different function allow to retrieve the current information (once mapped to the Neonet layout) of these potential outliers and their original information (from their source database).


img-name
Here the dates 260 (circled in red), 396 and 345 seem aberrant To check the info of the date numbered `260`, do: ```R source("R/neo_find_date.R") source("R/neo_dbs_info_date.R") abber.date <- neo_find_date(df = isochr$data, print.it = FALSE, idf.dates = 260) ad <- neo_dbs_info_date(df.c14 = df.c14, LabCode = abber.date$labcode) ``` Gives: ``` [1] "Reads a 'sf' dataframe" [1] "Layout for 'aberrant dates' format:" neonetatl Sac-1676 El Retamar -6263 EN None None ``` Where `neonetatl` is the source DB, `Sac-1676` is the labnum, `El Retamar` the site name, `-6263` the weighted mean (cal BC), `EN` the period (Early Neolithic), `None` the culture (no data) and the second `None` a place holder for a description explaining why this date has been discarted. If the archaeological documentation shows that date `Sac-1676` (*aka* `260`) is wrong (mixed assemblage, possibly coming from another layer, etc.). The last line `neonetatl Sac-1676 El Retamar -6263 EN None None` can be pasted as it into the [c14_aberrant_dates.tsv](https://github.com/zoometh/neonet/blob/main/inst/extdata/c14_aberrant_dates.tsv) file. More info can be found for this date, reusing the `ad` dataframe. Running the following functions helps to contextualize the date. ```R source("R/neo_dbs_info_date_src.R") neo_dbs_info_date_src(db = ad$sourcedb, LabCode = ad$LabCode) ``` Gives: ``` sourcedb sourcedb_version labnr c14age c14std site feature period material species country lat 1 neonetatl 2023-12-08 Sac-1676 7400 100 El Retamar Conchero 6 EN shell Spain 36.57873 lon shortref 1 -6.226273 Cantillo-Duarte et al. 2010 ``` The list of aberrant dates, for example [c14_aberrant_dates.tsv](https://github.com/zoometh/neonet/blob/main/inst/extdata/c14_aberrant_dates.tsv), is used to discard some dates with the `neo_dbs_rm_date()` function ```R source("R/neo_dbs_rm_date.R") df_filtered <- neo_dbs_rm_date(df.c14) ``` By default, dates having a dash prefix in their `sourcedb` column will be skipped (ex: `-radon`)


img-name
Screenshot of the 'c14_to_remove.tsv' table

A template script to run this operation: [run_outliers.R](https://github.com/zoometh/neonet/blob/main/doc/run_outliers.R) #### Wrong coordinates Site coordinates can be wrong, for example for the Jordian site of Sabha ([Xronos](https://xronos.ch/sites/12960) | [Google maps](https://maps.app.goo.gl/r4GEuFyzwysAwLe89)). Curated coordinates are listed in the [c14_corrected_coordinates.tsv](https://github.com/zoometh/neonet/blob/main/inst/extdata/c14_corrected_coordinates.tsv) file and handle by the `neo_dbs_coord_dates()` function. #### Correct Site names When aggregate different databases, using ce c14bazAAR package, two same sites can have different site names (ex: Pollera and Grotta della Pollera). To avoid these mismatches, the function `neo_dbs_sitename_dates()` uses the mapping table [c14_corrected_sitenames.tsv](https://raw.githubusercontent.com/zoometh/neonet/main/inst/extdata/c14_corrected_sitenames.tsv) ```R source("R/neo_dbs_sitename_dates.R") df.c14 <- neo_dbs_sitename_dates(df.c14) ``` ### SPD plot Plot the summed probabilty densities (SPD) of the two datasets, once `df.c14` calculated. The function `neo_spd()` calls `neo_spdplot()`. The latter has been adapted from `rcarbon::plot.stackCalSPD.R`, to fetch NeoNet default period colors. ```R library(rcarbon) source("R/neo_spd.R") source("R/neo_spdplot.R") neo_spd(df.c14 = df.c14) ```


img-name
NeoNet dataset SPD with default period colors

`neo_spd()` can be run on a GeoJSON file exported from the NeoNet app (see "export dates" in the [web document](https://zoometh.github.io/neonet/doc/#export_dates). For example [neonet-data-2023-09-24.geojson](https://github.com/zoometh/neonet/blob/main/results/neonet-data-2023-09-24.geojson), see also: [isochrones](https://github.com/zoometh/neonet?tab=readme-ov-file#isochrones) ```R neo_spd(df.c14 = "https://raw.githubusercontent.com/zoometh/neonet/main/results/neonet-data-2023-09-24.geojson", export = T) ``` ### Isochrones Create a map with isochrone contours to model the spread of Neolithic using the `neo_isochr()` function. #### Example The file [neonet-data-2023-09-24.geojson](https://github.com/zoometh/neonet/blob/main/results/neonet-data-2023-09-24.geojson) is an export from the NeoNet app (see "export dates" in the [web document](https://zoometh.github.io/neonet/doc/#export_dates)). This GeoJSON file can be curated in a GIS (ex: removing aberrant dates) before running the following functions (`neo_isochr`, `neo_spd`, etc.).


img-name
Screen capture of the NeoNet app before the export of the `neonet-data-2023-09-24.geojson` file: Early Neolithic (EN) dates only having a SD ≤ 50, and calBC interval between -7000 and -3000

The output is a map with isochrones calculated on the median of calibrated dates. ```R library(rcarbon) source("R/neo_isochr.R") source("R/neo_spd.R") source("R/neo_calib.R") neo_isochr(df.c14 = "https://raw.githubusercontent.com/zoometh/neonet/main/results/neonet-data-2023-09-24.geojson", show.lbl = FALSE) ``` Where `neo_calib()` calculate the cal BC min and max (i.e, calibrates), and the medidan (with 'intcal20' and the [Bchron](https://andrewcparnell.github.io/Bchron/) R package)


img-name
Output map from the `neonet-data-2023-09-24.geojson`

#### Interpolation Isochrones are created from the interpolation map: ```R source("R/neo_isochr_inter_map.R") inter.map <- neo_isochr_inter_map(isochr$inter) inter.map ## Not Run # ggplot2::ggsave(paste0(root.path, "img/", "isochrones-barriere-Italy-EN-inter-map.png"), inter.map, width = 7, height = 7) ```


img-name img-name
Weighted medians interpolated

#### EN and LM The same function can be used symetrically: instead of plotting the earliest dates of the Neolithic (EN), one can also plot the latest dates of the Paleolithic (or Late Mesolithic, LM) ```R myc14data <- "https://raw.githubusercontent.com/zoometh/neonet/main/results/1_AOI_France_E-W.geojson" neo_isochr(df.c14 = myc14data, mapname = "France_EW") neo_isochr(df.c14 = myc14data, mapname = "France_EW", selected.per = c("LM")) ```


img-name img-name
Output maps from the `1_AOI_France_E-W.geojson`: earliest Neolithic dates and latest Paleolithic dates

## Koppen > KCC, Koppen Climate Classification, Koeppen Climate Classification The app integrates Koppen Climate Classification (KCC) for 6,000 BP to 10,000 BP created with the R [pastclim](https://github.com/EvolEcolGroup/pastclim) package and the `neo_kcc_create()` function.


img-name
The Koppen Climate Classification calculated for 8,000 BP (8k) with the pastclim R package and hosted on a GeoServer

Neonet functions help to blend pastclim KCC and radiocarbon dates. ```R # install the packages pastclim and terra devtools::install_github("EvolEcolGroup/pastclim", ref="dev") library(pastclim) library(terra) # set paths and create maps outDir <- "C:/Rprojects/neonet/doc/data/clim/" pastclim::set_data_path(path_to_nc = outDir) source("R/neo_kcc_create.R") neo_kcc_create() ``` Creates these KCC GeoTiffs: KCC are created as GeoTiffs using the R pastclim package | Geotiff image | description | |----------|----------| | img-name|koppen_11k [download](https://raw.githubusercontent.com/zoometh/neonet/main/doc/data/clim/koppen_11k.tif)| | img-name|koppen_10k [download](https://raw.githubusercontent.com/zoometh/neonet/main/doc/data/clim/koppen_10k.tif)| | img-name|koppen_9k [download](https://raw.githubusercontent.com/zoometh/neonet/main/doc/data/clim/koppen_9k.tif)| | img-name|koppen_8k [download](https://raw.githubusercontent.com/zoometh/neonet/main/doc/data/clim/koppen_8k.tif)| | img-name|koppen_7k [download](https://raw.githubusercontent.com/zoometh/neonet/main/doc/data/clim/koppen_7k.tif)| | img-name|koppen_6k [download](https://raw.githubusercontent.com/zoometh/neonet/main/doc/data/clim/koppen_6k.tif)| Past Koppen Climate Classification calculated in Kyears BP with the pastclim R package ### Classes The Koppen Climate Classes are listed [here](https://github.com/zoometh/neonet/blob/main/inst/extdata/koppen.tsv) | code | num | value | hexa color | color | |------------|-------:|:------------------------------------------|:-------|:---------------------------------------------------------| | Af | 1 | Tropical, rainforest | 0000FF | ![#0000FF](https://placehold.co/15x15/0000FF/0000FF.png) | | Am | 2 | Tropical, monsoon | 0078FF | ![#0078FF](https://placehold.co/15x15/0078FF/0078FF.png) | | Aw | 3 | Tropical, savannah | 46AAF | ![#46AAF](https://placehold.co/15x15/46AAF/46AAF.png) | | BWh | 4 | Arid, desert, hot | FF0000 | ![#FF0000](https://placehold.co/15x15/FF0000/FF0000.png) | | BWk | 5 | Arid, desert, cold | FF9696 | ![#FF9696](https://placehold.co/15x15/FF9696/FF9696.png) | | BSh | 6 | Arid, steppe, hot | F5A500 | ![#F5A500](https://placehold.co/15x15/F5A500/F5A500.png) | | BSk | 7 | Arid, steppe, cold | FFDC64 | ![#FFDC64](https://placehold.co/15x15/FFDC64/FFDC64.png) | | Csa | 8 | Temperate, dry summer, hot summer | FFFF00 | ![#FFFF00](https://placehold.co/15x15/FFFF00/FFFF00.png) | | Csb | 9 | Temperate, dry summer, warm summer | C8C800 | ![#C8C800](https://placehold.co/15x15/C8C800/C8C800.png) | | Csc | 10 | Temperate, dry summer, cold summer | 969600 | ![#969600](https://placehold.co/15x15/969600/969600.png) | | Cwa | 11 | Temperate, dry winter, hot summer | 96FF96 | ![#96FF96](https://placehold.co/15x15/96FF96/96FF96.png) | | Cwb | 12 | Temperate, dry winter, warm summer | 64C864 | ![#64C864](https://placehold.co/15x15/64C864/64C864.png) | | Cwc | 13 | Temperate, dry winter, cold summer | 329632 | ![#329632](https://placehold.co/15x15/329632/329632.png) | | Cfa | 14 | Temperate, no dry season, hot summer | C8FF50 | ![#C8FF50](https://placehold.co/15x15/C8FF50/C8FF50.png) | | Cfb | 15 | Temperate, no dry season, warm summer | 64FF50 | ![#64FF50](https://placehold.co/15x15/64FF50/64FF50.png) | | Cfc | 16 | Temperate, no dry season, cold summer | 32C800 | ![#32C800](https://placehold.co/15x15/32C800/32C800.png) | | Dsa | 17 | Cold, dry summer, hot summer | FF00FF | ![#FF00FF](https://placehold.co/15x15/FF00FF/FF00FF.png) | | Dsb | 18 | Cold, dry summer, warm summer | C800C8 | ![#C800C8](https://placehold.co/15x15/C800C8/C800C8.png) | | Dsc | 19 | Cold, dry summer, cold summer | 963296 | ![#963296](https://placehold.co/15x15/963296/963296.png) | | Dsd | 20 | Cold, dry summer, very cold winter | 966496 | ![#966496](https://placehold.co/15x15/966496/966496.png) | | Dwa | 21 | Cold, dry winter, hot summer | AAAF | ![#AAAF](https://placehold.co/15x15/AAAF/AAAF.png) | | Dwb | 22 | Cold, dry winter, warm summer | 5A78DC | ![#5A78DC](https://placehold.co/15x15/5A78DC/5A78DC.png) | | Dwc | 23 | Cold, dry winter, cold summer | 4B50B4 | ![#4B50B4](https://placehold.co/15x15/4B50B4/4B50B4.png) | | Dwd | 24 | Cold, dry winter, very cold winter | 320087 | ![#320087](https://placehold.co/15x15/320087/320087.png) | | Dfa | 25 | Cold, no dry season, hot summer | 00FFFF | ![#00FFFF](https://placehold.co/15x15/00FFFF/00FFFF.png) | | Dfb | 26 | Cold, no dry season, warm summer | 37C8FF | ![#37C8FF](https://placehold.co/15x15/37C8FF/37C8FF.png) | | Dfc | 27 | Cold, no dry season, cold summer | 007D7D | ![#007D7D](https://placehold.co/15x15/007D7D/007D7D.png) | | Dfd | 28 | Cold, no dry season, very cold winter | 00465F | ![#00465F](https://placehold.co/15x15/00465F/00465F.png) | | ET | 29 | Polar, tundra | B2B2B2 | ![#B2B2B2](https://placehold.co/15x15/B2B2B2/B2B2B2.png) | | EF | 30 | Polar, frost | 666666 | ![#666666](https://placehold.co/15x15/666666/666666.png) | ### Koppen functions Koppen functions are designed not only for the Neonet dataset, but also for all radiocarbon dataset respecting the minimum data stracture (site, labcode, x, y, etc.). #### Extract This set of functions creates an interactive dataset of `df.c14` dates and the climates to which they belong. ```R kcc.file <- c("koppen_6k.tif", "koppen_7k.tif", "koppen_8k.tif", "koppen_9k.tif", "koppen_10k.tif", "koppen_11k.tif") source("R/neo_kcc_extract.R") df_kcc <- neo_kcc_extract(df.c14 = df.c14, kcc.file = kcc.file) source("R/neo_kcc_extract_longformat.R") df_kcc_long <- neo_kcc_extract_longformat(df_kcc) source("R/neo_dbs_info_dates_datatable.R") dt.out <- neo_dbs_info_dates_datatable(df.c14 = df_kcc_long, fields = c("SiteName", "code", "Period", "median", "map", "LabCode", "db_period", "db_culture", "sourcedb", "X", "Y", "color"), font.size = "16pt") ## Not Run # htmlwidgets::saveWidget(dt.out, "C:/Rprojects/neonet/doc/talks/2024-simep/img/dates_kcc.html") ``` #### Map The `neo_kcc_map()` creates a KCC map with a layer of dates above ```R source("R/config.R") # default variables: column names mapping, colors, etc. df <- c14bazAAR::get_c14data("neonet") df <- sf::st_as_sf(df, coords = c("lon", "lat"), crs = 4326) neo_kcc_map(df.c14 = df, kcc = "C:/Rprojects/neonet/doc/data/clim/koppen_7k.tif", export = TRUE, fileOut = "neonet_kcc.png" ) ``` Gives:


img-name
The neonet dataset over the KCC 7k

To assess what were the climates classes that where inhabited in the past, during the Late Mesolithic (LM) and Middle Mesolithic (MM) based on previous dates ```R df.c14 <- neo_calib(df.c14) df.c14 <- sf::st_as_sf(df.c14, coords = c("lon", "lat"), crs = 4326) kcc.file <- c("koppen_6k.tif", "koppen_7k.tif", "koppen_8k.tif", "koppen_9k.tif", "koppen_10k.tif", "koppen_11k.tif") df_cc <- neo_kcc_extract(df.c14 = df.c14, kcc.file = kcc.file) col.req <- gsub(pattern = ".tif", "", kcc.file) neo_kcc_plotbar(df_cc = df_cc, kcc.file = c("koppen_8k.tif", "koppen_9k.tif"), col.req = col.req, selected.per = c("EN"), title = "Neolithic: transition btw 7,000 and 6,000 BC", legend.show = FALSE) ``` Gives:


img-name
KCC occupied during the EN between 7,000 and 6,000 BC (9 ka and 8 ka BP) with counts of sites belonging to these time slices

The `neo_kcc_extract()` function collects the KCC values (climates) of each date. ## NeoNet strati
NeoNet-strati is an online R Shiny interactive app to record the stratigraphy of NeoNet's archaeological sites in an editable dataframe based on `LabCode` identifiers.

NeoNet-strati app

```mermaid flowchart TD A[NeoNet dataset] --is read by--> B{{neonet-strati}}:::neonetshiny; B --edit
site stratigraphy--> B; B --export
site stratigraphy
file--> C[Roc du Dourgne_2023-07-30.csv]; C --is read by--> D{{neonet_strat}}:::neonetfunct; D --export --> E[maps
charts
listings
...]; classDef neonetfunct fill:#e3c071; classDef neonetshiny fill:#71e37c; ```

Strati app and strati analysis overall Workflow

### App interface The app is composed by different panels: a site to be recorded ([Site Stratigraphy panel](https://github.com/zoometh/neonet?tab=readme-ov-file#site-stratigraphy-panel)), and the complete dataset ([All sites panel](https://github.com/zoometh/neonet?tab=readme-ov-file#all-sites-panel)). A site name is copied from [All sites panel](https://github.com/zoometh/neonet?tab=readme-ov-file#all-sites-panel) to [Site Stratigraphy panel](https://github.com/zoometh/neonet?tab=readme-ov-file#site-stratigraphy-panel). #### Site Stratigraphy panel Plot a selected site in an editable table to record its stratigraphical relationships.

img-name
Panel "Site Stratigraphy" editable dataframe. By default the app opens on "Pokrovnik"

#### All sites panel Show the complete NeoNet dataset. A site can be selected by searching it in the selection search bar (top-right) and copying its name (`Site Name` column). Here Roc du Dourgne, highlighted in blue.


img-name
Panel "All sites". Selection of the "Roc du Dourgne" site


img-name
"Roc du Dourgne" site sorted on its "PhaseCode"

The stratigraphical relations can be added into the "After" column, and thereafter exported in CSV

img-name
"Roc du Dourgne" stratgraphical relationships (column "After") after edition

For example, "Roc du Dourgne" relationships are: |LabCode |After |Period |PhaseCode | C14Age| C14SD| |:-------|:-------|:------|:---------|------:|-----:| |MC-1101 |MC-1102 |EN |C5 | 5050| 100| |MC-1102 |MC-1103 |EN |C5 | 6170| 100| |MC-1103 |MC-1105 |EN |C6 | 5100| 80| |MC-1104 |MC-1105 |EN |C6 | 6470| 100| |MC-1105 |MC-1107 |EN |C6 | 5550| 80| |MC-1107 | |LM |C7 | 6850| 100| |MC-781 | |EN |C6 | 5000| 170| |MC-782 | |LM |Layer 7 | 5770| 170| The first row can be read as: "*the layer containing radiocarbon date MC-1101 comes **after** the layer containing radiocarbon date MC-1102*". Once the site stratigraphy recorded, save the changes by downloading the dataset pressing the button (top-left) as a CSV file. The output file name is the site name and the current date (ex: `Roc du Dourgne_2024-04-12.csv`). ### Strati analysis The file exported from the NeoNet strati app can be read by the `neo_strati()` function (see [Harris Matrix](https://github.com/zoometh/neonet#harris-matrix)) #### Harris Matrix The output CSV file exported by [NeoNet-strati](https://github.com/zoometh/neonet#neonet-strati) can be read by the `neo_strat()` function. For example, ploting the `C14Age` and the `PhaseCode`. ```R neo_strat(inData = 'https://raw.githubusercontent.com/historical-time/data-samples/main/neonet/Roc du Dourgne_2023-07-30.csv', outLabel = c("C14Age")) neo_strat(inData = 'https://raw.githubusercontent.com/historical-time/data-samples/main/neonet/Roc du Dourgne_2023-07-30.csv', outLabel = c("PhaseCode")) ``` Gives:

img-name img-name
"Roc du Dourgne" stratgraphical relationships using LabCode identifiers, ordered on the "LabCode" column, displaying the C14Age (left) and the LabCode (right)

Changing the `outLabel` to `Period` allows to color on periods using the default period colors (see the [web document](https://zoometh.github.io/neonet/doc/#3_data_panel)) ```R neo_strat(inData = 'https://raw.githubusercontent.com/historical-time/data-samples/main/neonet/Roc du Dourgne_2023-07-30.csv', outLabel = c("Period")) ``` Gives:

img-name
"Roc du Dourgne" stratgraphical relationships using LabCode identifiers, ordered on the "LabCode" column

## Leafrog alignment Using `neo_leapfrog(DT = T)` to merge dataframe from NeoNet and Leapfrog on common C14 LabCode values:


Screen capture of [NN_and_LF.html](https://historical-time.github.io/caa23/neonet/results/NN_and_LF.html)

## Sibling projects There are mainy IT-based projects dealing with radiocarbon dates, such as the comprehensive platform [Xronos](https://xronos.ch/), the radiocarbon aggregator [C14bazAAR](https://github.com/ropensci/c14bazAAR), and many others, see the [open-archaeo](https://open-archaeo.info/tags/radiocarbon-dating-calibration-and-sequencing/) site ## Documentation * NeoNet app [web document](https://zoometh.github.io/neonet/doc/) * [Contribution rules](https://github.com/zoometh/neonet/blob/master/github/CONTRIBUTING.md) * [NeoNet package license](https://github.com/zoometh/neonet/blob/master/LICENSE) ## Communication * Big Historical Data Conference - Shiny server (with the app embeded): http://shinyserver.cfs.unipi.it:3838/neonet/bhdc - GitHub (without the app embeded): https://zoometh.github.io/neonet/doc/talks/2023-bhdc * Neonet workshop - GitHub: https://zoometh.github.io/neonet/doc/talks/2024-neonet-ws/pres * Oxford Seminar Series - GitHub: https://zoometh.github.io/neonet/doc/talks/2024-oxford/pres * SIMEP - GitHub: https://zoometh.github.io/neonet/doc/talks/2024-simep/pres