zugexiaodui / torch_flops

A library for calculating the FLOPs in the forward() process based on torch.fx
MIT License
57 stars 1 forks source link

torch_flops

Introduction

torch_flops中文介绍 - 知乎

This is a library for calculating FLOPs of pytorch models. Compared with other libraries such as thop, ptflops, torchinfo and torchanalyse, the advantage of this library is that it can capture all calculation operations in the forward process, not limited to only the subclasses of nn.Module.

Update Note: Introducing support for displaying the execution time of each operation. Please use flops_counter.print_result_table() to see the detailed results.

Update Note: Introducing support for displaying the GPU memory usage of each operation. In the result table, mem_before_op, mem_after_op represent the memories (counted using torch.cuda.max_memory_allocated() (default) or torch.cuda.memory_allocated()) before and after the operation. mem_delta represent the difference between mem_after_op and mem_before_op. Please note that just run one model each time in a program in order to obtain accurate memory statistics.

Usage

Installation

pip install torch_flops -i https://pypi.org/simple

Requirements

Example 1

An expamle for calculating the FLOPs of ViT-base16 and ResNet-50 is given in example1.py. The example requires the timm library. You can calculate the FLOPs in three lines:

    # NOTE: First run the model once for accurate time measurement in the following process.
    # The input `x` and the model should be placed on GPU for memory measurement.
    with torch.no_grad():
        model(x)
    # Initialize the `TorchFLOPsByFX`. Please read the doc of the class for initialization options.
    flops_counter = TorchFLOPsByFX(model)
    # Feed the input tensor to the model
    flops_counter.propagate(x)
    # Print the full result table. It also returns the detailed result of each operation in a 2D list.
    result_table = flops_counter.print_result_table()
    # Print FLOPs, execution time and max GPU memory.
    total_flops = flops_counter.print_total_flops(show=True)
    total_time = flops_counter.print_total_time()
    max_memory = flops_counter.print_max_memory()

The output of example1.py is:

========== vit_base16 ==========
total_flops = 35,164,979,282 
total_time = 14.015 ms
max_memory = 362,289,152 Bytes
========== resnet50 ==========
total_flops = 8,227,340,288 
total_time = 10.867 ms
max_memory = 249,894,400 Bytes

image

Example 2

Another example of calculating the FLOPs for an attention block is provided in example2.py. However, You can define a simple model to check the result (see compare.py).

    C = 768
    device = 'cuda:0'

    # Define the model: an attention block (refer to "timm": https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py)
    block = Block(C, num_heads=2, qkv_bias=True)
    block.attn.fused_attn = False
    block.eval()
    model = block

    # Input
    # N: number of tokens
    N = 14**2 + 1
    B = 1
    x = torch.randn([B, N, C]).to(device)
    model.to(device)

    # NOTE: First run the model once for accurate time measurement in the following process.
    with torch.no_grad():
        model(x)

    # Output
    # Build the graph of the model. You can specify the operations (listed in `MODULE_FLOPs_MAPPING`, `FUNCTION_FLOPs_MAPPING` and `METHOD_FLOPs_MAPPING` in 'flops_ops.py') to ignore.
    flops_counter = TorchFLOPsByFX(model)
    # Print the grath (not essential)
    print('*' * 120)
    flops_counter.graph_model.graph.print_tabular()
    # Feed the input tensor
    with torch.no_grad():
        flops_counter.propagate(x)
    # Print the flops of each node in the graph. Note that if there are unsupported operations, the "flops" of these ops will be marked as 'not recognized'.
    print('*' * 120)
    result_table = flops_counter.print_result_table()
    # Print the total FLOPs
    total_flops = flops_counter.print_total_flops()
    total_time = flops_counter.print_total_time()
    max_memory = flops_counter.print_max_memory()

You can also feed more than one sequential arguments for the model in propagate() if the model.forward() function need not only one arguments.

Advantage

torch_flops can capture all the operations excuted in the forward including the operations not wrapped by nn.Module, like torch.matmul, @, + and tensor.exp, and it can ignore the FLOPs of the modules not used in the forward process.

There is a comparison of torch_flops (this repo), torchanalyse, thop and ptflops in the script compare.py. The output of

python compare.py:

**************************************** Model ****************************************
SimpleModel(
  (layer): Linear(in_features=5, out_features=4, bias=True)
)
tensor([[-0.2077,  0.2623,  1.3978, -0.4170]], grad_fn=<AddmmBackward0>)
================================================================================
**************************************** torch_flops ****************************************
===========  ===========  ===========  =====================  =======
node_name    node_op      op_target    nn_module_stack[-1]      flops
===========  ===========  ===========  =====================  =======
x            placeholder  x                                         0
layer        call_module  layer        Linear                      40
output       output       output                                    0
===========  ===========  ===========  =====================  =======
torch_flops: 40 FLOPs
================================================================================
**************************************** torchanalyse ****************************************
torchanalyse: 40 FLOPs
================================================================================
**************************************** thop ****************************************
[INFO] Register count_linear() for <class 'torch.nn.modules.linear.Linear'>.
thop: 20 MACs
================================================================================
**************************************** ptflops ****************************************
Warning: module SimpleModel is treated as a zero-op.
SimpleModel(
  24, 100.000% Params, 24.0 Mac, 100.000% MACs, 
  (layer): Linear(24, 100.000% Params, 24.0 Mac, 100.000% MACs, in_features=5, out_features=4, bias=True)
)
ptflops: 24 MACs
================================================================================

Now let's add an operation x += 1. in forward(). The output of

python compare.py --add_one:

**************************************** Model ****************************************
SimpleModel(
  (layer): Linear(in_features=5, out_features=4, bias=True)
)
tensor([[1.0426, 0.6963, 1.7114, 1.6526]], grad_fn=<AddBackward0>)
================================================================================
**************************************** torch_flops ****************************************
===========  =============  =======================  =====================  =======
node_name    node_op        op_target                nn_module_stack[-1]      flops
===========  =============  =======================  =====================  =======
x            placeholder    x                                                     0
layer        call_module    layer                    Linear                      40
add          call_function  <built-in function add>                               4
output       output         output                                                0
===========  =============  =======================  =====================  =======
torch_flops: 44 FLOPs
================================================================================
**************************************** torchanalyse ****************************************
torchanalyse: 40 FLOPs
================================================================================
**************************************** thop ****************************************
[INFO] Register count_linear() for <class 'torch.nn.modules.linear.Linear'>.
thop: 20 MACs
================================================================================
**************************************** ptflops ****************************************
Warning: module SimpleModel is treated as a zero-op.
SimpleModel(
  24, 100.000% Params, 24.0 Mac, 100.000% MACs, 
  (layer): Linear(24, 100.000% Params, 24.0 Mac, 100.000% MACs, in_features=5, out_features=4, bias=True)
)
ptflops: 24 MACs
================================================================================

It can be seen that only torch_flops can capture the FLOPs of x+=1!

torchinfo is not compared here but it does not have this ability. We also find that some of the other libraries cannot calculate the FLOPs of the bias item in nn.Linear using python compare.py --linear_no_bias.

Supported Operations

The supported operations are listed in the following (the keys of the dicts), which can also be seen in flops_ops.py. Note that in addtion to the modules inherited from nn.Module (e.g. nn.Linear), the function (e.g. @, +, torch.softmax) and method operations (e.g. tensor.softmax) are also supported!

MODULE_FLOPs_MAPPING = {
    'Linear': ModuleFLOPs_Linear,
    'Identity': ModuleFLOPs_zero,
    'Conv1d': ModuleFLOPs_ConvNd,
    'Conv2d': ModuleFLOPs_ConvNd,
    'Conv3d': ModuleFLOPs_ConvNd,
    'AvgPool1d': ModuleFLOPs_AvgPoolNd,
    'AvgPool2d': ModuleFLOPs_AvgPoolNd,
    'AvgPool3d': ModuleFLOPs_AvgPoolNd,
    'AdaptiveAvgPool1d': ModuleFLOPs_AdaptiveAvgPoolNd,
    'AdaptiveAvgPool2d': ModuleFLOPs_AdaptiveAvgPoolNd,
    'AdaptiveAvgPool3d': ModuleFLOPs_AdaptiveAvgPoolNd,
    'MaxPool1d': ModuleFLOPs_MaxPoolNd,
    'MaxPool2d': ModuleFLOPs_MaxPoolNd,
    'MaxPool3d': ModuleFLOPs_MaxPoolNd,
    'AdaptiveMaxPool1d': ModuleFLOPs_AdaptiveMaxPoolNd,
    'AdaptiveMaxPool2d': ModuleFLOPs_AdaptiveMaxPoolNd,
    'AdaptiveMaxPool3d': ModuleFLOPs_AdaptiveMaxPoolNd,
    'LayerNorm': ModuleFLOPs_Norm,
    'BatchNorm1d': ModuleFLOPs_Norm,
    'BatchNorm2d': ModuleFLOPs_Norm,
    'BatchNorm3d': ModuleFLOPs_Norm,
    'InstanceNorm1d': ModuleFLOPs_Norm,
    'InstanceNorm2d': ModuleFLOPs_Norm,
    'InstanceNorm3d': ModuleFLOPs_Norm,
    'GroupNorm': ModuleFLOPs_Norm,
    'Dropout': ModuleFLOPs_zero,
    'GELU': ModuleFLOPs_GELU,
    'ReLU': ModuleFLOPs_elemwise,
    'Flatten': ModuleFLOPs_zero,
}
FUNCTION_FLOPs_MAPPING = {
    'getattr': FunctionFLOPs_zero,
    'getitem': FunctionFLOPs_zero,
    'mul': FunctionFLOPs_elemwise,
    'truediv': FunctionFLOPs_elemwise,
    'sub': FunctionFLOPs_elemwise,
    'matmul': FunctionFLOPs_matmul,
    'add': FunctionFLOPs_elemwise,
    'concat': FunctionFLOPs_zero,
    '_assert': FunctionFLOPs_zero,
    'eq': FunctionFLOPs_elemwise,
    'cat': FunctionFLOPs_zero,
    'linear': FunctionFLOPs_linear,
}
METHOD_FLOPs_MAPPING = {
    'reshape': MethodFLOPs_zero,
    'permute': MethodFLOPs_zero,
    'unbind': MethodFLOPs_zero,
    'transpose': MethodFLOPs_zero,
    'repeat': MethodFLOPs_zero,
    'unsqueeze': MethodFLOPs_zero,
    'exp': MethodFLOPs_elemwise,
    'sum': MethodFLOPs_sum,
    'div': MethodFLOPs_elemwise,
    'softmax': MethodFLOPs_softmax,
    'expand': MethodFLOPs_zero,
    'flatten': MethodFLOPs_zero,
}

However, not all the operations in pytorch have been considered since it spends a lot of effort. If you need to add support for a certain operation, please raise an issue. You are also welcome to add more features to this repository.

Limitations

torch.fx can capture all the operations in the forward process, but it requires a high version of pytorch. However, we recommod you to use the newer version of pytorch (>=2.0) to try the new features.

When using torch.fx, the model should be able to successfully transformed into a graph_model by symbolic_trace(). Dynamic control flow is not supported in the forward function. Please refer to https://pytorch.org/docs/stable/fx.html#limitations-of-symbolic-tracing for more information.

There are many operations not implemented so far. However, you can raise an issue or contact me (zgxd@mail.nwpu.edu.cn) to add new operations.

Acknowledgements

pytorch: https://github.com/pytorch/pytorch

timm: https://github.com/huggingface/pytorch-image-models

torchscan: https://frgfm.github.io/torch-scan/index.html

torchprofile: https://github.com/zhijian-liu/torchprofile