zz10001 / LITS2017-main1

liver tumor segmentation(2d UNet) for LITS2017
Apache License 2.0
64 stars 15 forks source link

2d segmentation for LITS2017 (the challenge website in codalab)

data:
GoogleDrive
百度云(7itj)

How to use it

step 1 data process

you can get the data like this,each npy file shape is 448*448*3,use each slice below and above as input image,the mid slice as mask(448*448)

data---
    trainImage_k1_1217---
        1_0.npy
        1_1.npy
        ......
    trainMask_k1_1217---
        1_0.npy
        1_1.npy
        ......

step 2 Train the model

python train.py

step 3 Test the model

you can download the models and ROI liver mask from This(syzv) and put them in suitable place according to test.py python test.py

step 4 postprocess to remove False predict

python postprocess.py

baseline

Method U-Net Att U-Net sep U-Net denseunet
Dice(liver) 0.951 0.950 0.948 0.949
rvd 0.016 0.038 0.037 0.029
jaccard 0.911 0.906 0.903 0.904
Dice(tumor) 0.613 0.609 0.594 0.600
rvd -0.076 -0.067 -0.096 -0.119
jaccard 0.634 0.621 0.604 0.614

the code is built on Image_Segmentation

Later work

Some others Related Work on Liver tumor segmentation

3d model for segmentation
3DUNet-Pytorch
MICCAI-LITS2017
RAUNet-tumor-segmentation
LiTS---Liver-Tumor-Segmentation-Challenge
H-DenseUNet
DoDNet
lits
SegWithDistMap

2d model for segmentation
LiTS-Liver-Tumor-Segmentaton-Challenge
ISBI-2020-LITS_Hybrid_Comp_Net
unet-lits-2d-pipeline
DS-SFFNet
u_net_liver