data:
GoogleDrive
百度云(7itj)
step 1 data process
python preprocess.py
you can get the data like this,each npy file shape is 448*448*3
,use each slice below and above as input image,the mid slice as mask(448*448
)
data---
trainImage_k1_1217---
1_0.npy
1_1.npy
......
trainMask_k1_1217---
1_0.npy
1_1.npy
......
python train.py
you can download the models and ROI liver mask from This(syzv) and put them in suitable place according to test.py
python test.py
python postprocess.py
Method | U-Net | Att U-Net | sep U-Net | denseunet |
---|---|---|---|---|
Dice(liver) |
0.951 | 0.950 | 0.948 | 0.949 |
rvd |
0.016 | 0.038 | 0.037 | 0.029 |
jaccard |
0.911 | 0.906 | 0.903 | 0.904 |
Dice(tumor) |
0.613 | 0.609 | 0.594 | 0.600 |
rvd |
-0.076 | -0.067 | -0.096 | -0.119 |
jaccard |
0.634 | 0.621 | 0.604 | 0.614 |
the code is built on Image_Segmentation
3d model for segmentation
3DUNet-Pytorch
MICCAI-LITS2017
RAUNet-tumor-segmentation
LiTS---Liver-Tumor-Segmentation-Challenge
H-DenseUNet
DoDNet
lits
SegWithDistMap
2d model for segmentation
LiTS-Liver-Tumor-Segmentaton-Challenge
ISBI-2020-LITS_Hybrid_Comp_Net
unet-lits-2d-pipeline
DS-SFFNet
u_net_liver