BlueBrain / libsonata

A python and C++ interface to the SONATA format
https://libsonata.readthedocs.io/en/stable/
GNU Lesser General Public License v3.0
12 stars 12 forks source link
circuit modelling simulation sonata

|banner|

|license| |coverage| |docs|

libsonata

C++ / Python reader for SONATA circuit files: SONATA guide <https://github.com/AllenInstitute/sonata/blob/master/docs/SONATA_DEVELOPER_GUIDE.md>__

Installation

Installing from PyPI


.. code-block:: shell

   pip install libsonata

Installing as a Python package, directly from GitHub

.. code-block:: shell

pip install git+https://github.com/BlueBrain/libsonata

Building the C++ library


.. code-block:: shell

   git clone git@github.com:BlueBrain/libsonata.git --recursive
   cd libsonata
   mkdir build && cd build
   cmake -DCMAKE_BUILD_TYPE=Release -DEXTLIB_FROM_SUBMODULES=ON ..
   make -j

Since `libsonata` uses backports for `std::optional` and `std::variant` which
turn into their actual STL implementation once available, it's recommended to compile
`libsonata` with the same C++ standard as the project linking to `libsonata`. This
is done by passing `-DCMAKE_CXX_STANDARD={14,17}` to the `cmake` command above.

Usage (Python)
--------------

Nodes

NodeStorage +++++++++++

.. code-block:: pycon

import libsonata

nodes = libsonata.NodeStorage('path/to/H5/file')

list populations

nodes.population_names

open population

population = nodes.open_population()

NodePopulation ++++++++++++++

.. code-block:: pycon

total number of nodes in the population

population.size

attribute names

population.attribute_names

get attribute value for single node, say 42

population.get_attribute('mtype', 42)

...or Selection of nodes (see below) => returns NumPy array with corresponding values

selection = libsonata.Selection(values=[1, 5, 9, 42]) # nodes 1, 5, 9, 42 mtypes = population.get_attribute('mtype', selection) list(zip(selection.flatten(), mtypes)) [(1, u'mtype_of_1'), (5, u'mtype_of_5'), (9, u'mtype_of_9'), (42, u'mtype_of_42')]

Selection +++++++++

List of element IDs (either node_id, or edge_id) where adjacent IDs are grouped for the sake of efficient HDF5 file access. For instance, {1, 2, 3, 5} sequence becomes {[1, 4), [5, 6)}.

Selection can be instantiated from:

EdgePopulation connectivity queries (see below) return Selection\ s as well.

.. code-block:: pycon

selection = libsonata.Selection([1, 2, 3, 5]) selection.ranges [(1, 4), (5, 6)]

.. code-block:: pycon

selection = libsonata.Selection([(1, 4), (5, 6)]) selection.flatten() [1, 2, 3, 5] selection.flat_size 4 bool(selection) True

Node Sets +++++++++

libsonata can work with the Node Set concept, as described here: SONATA guide: Node Sets File <https://github.com/AllenInstitute/sonata/blob/master/docs/SONATA_DEVELOPER_GUIDE.md#node-sets-file>__ This allows the definition of names for groups of cells, and a way to query them. libsonata also allows for extended expressions, such as Regular expressions,and floating point tests, as described here: SONATA extension: Node Sets <https://sonata-extension.readthedocs.io/en/latest/sonata_nodeset.html>__

.. code-block:: pycon

load a node set JSON file

node_sets = libsonata.NodeSets.from_file('node_sets.json')

list node sets

node_sets.names {'L6_UPC', 'Layer1', 'Layer2', 'Layer3', ....}

get the selection of nodes that match in population

selection = node_sets.materialize('Layer1', population)

node sets can also be loaded from a JSON string

node_sets_manual = libsonata.NodeSets(json.dumps({"SLM_PPA_and_SP_PC": {"mtype": ["SLM_PPA", "SP_PC"]}})) node_sets_manual.names {'SLM_PPA_and_SP_PC'}

Edges


EdgeStorage
+++++++++++

Population handling for `EdgeStorage` is analogous to `NodeStorage`:

.. code-block:: pycon

   >>> edges = libsonata.EdgeStorage('path/to/H5/file')

   # list populations
   >>> edges.population_names

   # open population
   >>> population = edges.open_population(<name>)

EdgePopulation
++++++++++++++

.. code-block:: pycon

   # total number of edges in the population
   >>> population.size

   # attribute names
   >>> population.attribute_names

   # get attribute value for single edge, say 123
   >>> population.get_attribute('delay', 123)

   # ...or Selection of edges => returns NumPy array with corresponding values
   >>> selection = libsonata.Selection([1, 5, 9])
   >>> population.get_attribute('delay', selection) # returns delays for edges 1, 5, 9

...with additional methods for querying connectivity, where the results are selections that can be applied like above

.. code-block:: pycon

   # get source / target node ID for the 42nd edge:
   >>> population.source_node(42)
   >>> population.target_node(42)

   # query connectivity (result is Selection object)
   >>> selection_to_1 = population.afferent_edges(1)  # all edges with target node_id 1
   >>> population.target_nodes(selection_to_1)  # since selection only contains edges
                                                # targeting node_id 1 the result will be a
                                                # numpy array of all 1's
   >>> selection_from_2 = population.efferent_edges(2)  # all edges sourced from node_id 2
   >>> selection = population.connecting_edges(2, 1)  # this selection is all edges from
                                                      # node_id 2 to node_id 1

   # ...or their vectorized analogues
   >>> selection = population.afferent_edges([1, 2, 3])
   >>> selection = population.efferent_edges([1, 2, 3])
   >>> selection = population.connecting_edges([1, 2, 3], [4, 5, 6])

Reports

SpikeReader +++++++++++

.. code-block:: pycon

import libsonata

spikes = libsonata.SpikeReader('path/to/H5/file')

list populations

spikes.get_population_names()

open population

population = spikes['']

SpikePopulation +++++++++++++++

.. code-block:: pycon

get all spikes [(node_id, timestep)]

population.get() [(5, 0.1), (2, 0.2), (3, 0.3), (2, 0.7), (3, 1.3)]

get all spikes betwen tstart and tstop

population.get(tstart=0.2, tstop=1.0) [(2, 0.2), (3, 0.3), (2, 0.7)]

get spikes attribute sorting (by_time, by_id, none)

population.sorting 'by_time'

Pandas can be used to create a dataframe and get a better representation of the data

.. code-block:: pycon

import pandas

data = population.get() df = pandas.DataFrame(data=data, columns=['ids', 'times']).set_index('times') print(df) ids times 0.1 5 0.2 2 0.3 3 0.7 2 1.3 3

SomaReportReader ++++++++++++++++

.. code-block:: pycon

somas = libsonata.SomaReportReader('path/to/H5/file')

list populations

somas.get_population_names()

open population

population_somas = somas['']

SomaReportPopulation ++++++++++++++++++++

.. code-block:: pycon

get times (tstart, tstop, dt)

population_somas.times (0.0, 1.0, 0.1)

get unit attributes

population_somas.time_units 'ms' population_somas.data_units 'mV'

node_ids sorted?

population_somas.sorted True

get a list of all node ids in the selected population

population_somas.get_node_ids() [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

get the DataFrame of the node_id values for the timesteps between tstart and tstop

data_frame = population_somas.get(node_ids=[13, 14], tstart=0.8, tstop=1.0)

get the data values

data_frame.data [[13.8, 14.8], [13.9, 14.9]]

get the list of timesteps

data_frame.times [0.8, 0.9]

get the list of node ids

data_frame.ids [13, 14]

Once again, pandas can be used to create a dataframe using the data, ids and times lists

.. code-block:: pycon

import pandas

df = pandas.DataFrame(data_frame.data, columns=data_frame.ids, index=data_frame.times) print(df) 13 14 0.8 13.8 14.8 0.9 13.9 14.9

ElementReportReader +++++++++++++++++++

.. code-block:: pycon

elements = libsonata.ElementReportReader('path/to/H5/file')

list populations

elements.get_population_names()

open population

population_elements = elements['']

ElementReportPopulation +++++++++++++++++++++++

.. code-block:: pycon

get times (tstart, tstop, dt)

population_elements.times (0.0, 4.0, 0.2)

population_elements.get_node_ids() [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

get the DataFrame of the node_id values for the timesteps between tstart and tstop

data_frame = population_elements.get(node_ids=[13, 14], tstart=0.8, tstop=1.0)

get the data values (list of list of floats with data[time_index][element_index])

data_frame.data [[46.0, 46.1, 46.2, 46.3, 46.4, 46.5, 46.6, 46.7, 46.8, 46.9], [56.0, 56.1, 56.2, 56.3, 56.4, 56.5, 56.6, 56.7, 56.8, 56.9]]

get the list of timesteps

data_frame.times [0.8, 1.0]

get the list of (node id, element_id)

data_frame.ids [(13, 30), (13, 30), (13, 31), (13, 31), (13, 32), (14, 32), (14, 33), (14, 33), (14, 34), (14, 34)]

The same way than with spikes and soma reports, pandas can be used to get a better representation of the data

.. code-block:: pycon

import pandas

df = pandas.DataFrame(data_frame.data, columns=pandas.MultiIndex.from_tuples(data_frame.ids), index=data_frame.times) print(df) 13 14 30 30 31 31 32 32 33 33 34 34 0.8 46.0 46.1 46.2 46.3 46.4 46.5 46.6 46.7 46.8 46.9 1.0 56.0 56.1 56.2 56.3 56.4 56.5 56.6 56.7 56.8 56.9

For big datasets, using numpy arrays could greatly improve the performance

.. code-block:: pycon

import numpy

np_data = numpy.asarray(data_frame.data) np_ids = numpy.asarray(data_frame.ids).T np_times = numpy.asarray(data_frame.times)

df = pandas.DataFrame(np_data, columns=pandas.MultiIndex.from_arrays(np_ids), index=np_times)

Acknowledgements

The development of this software was supported by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology.

This research was supported by the EBRAINS research infrastructure, funded from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3). This project/research has received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

License

libsonata is distributed under the terms of the GNU Lesser General Public License version 3, unless noted otherwise, for example, for external dependencies. Refer to COPYING.LESSER and COPYING files for details.

Copyright (c) 2018-2022 Blue Brain Project/EPFL

libsonata is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 3 as published by the Free Software Foundation.

libsonata is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with libsonata. If not, see https://www.gnu.org/licenses/.

.. |license| image:: https://img.shields.io/pypi/l/libsonata :target: https://github.com/BlueBrain/libsonata/blob/master/COPYING.LESSER

.. |coverage| image:: https://coveralls.io/repos/github/BlueBrain/libsonata/badge.svg :target: https://coveralls.io/github/BlueBrain/libsonata

.. |docs| image:: https://readthedocs.org/projects/libsonata/badge/?version=latest :target: https://libsonata.readthedocs.io/ :alt: documentation status

.. substitutions .. |banner| image:: docs/source/_images/libSonataLogo.jpg