CharlieDinh / pFedMe

Personalized Federated Learning with Moreau Envelopes (pFedMe) using Pytorch (NeurIPS 2020)
289 stars 89 forks source link
federated-learning federated-meta-learning neurips-2020 paper per-fedavg personalized-federated-learning pfedme pytorch

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020)

This repository implements all experiments in the paper Personalized Federated Learning with Moreau Envelopes.

Authors: Canh T. Dinh, Nguyen H. Tran, Tuan Dung Nguyen

Full paper: https://arxiv.org/pdf/2006.08848.pdf https://proceedings.neurips.cc/paper/2020/file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf

Paper has been accepted by NeurIPS 2020.

This repository does not only implement pFedMe but also FedAvg, and Per-FedAvg algorithms. (Federated Learning using Pytorch)

Software requirements:

Dataset: We use 2 datasets: MNIST and Synthetic

Produce experiments and figures

Using same parameters

Fine-tuned Parameters:

To produce results in the table of fine-tune parameter:

Effect of hyper-parameters:

For all the figures for effect of hyper-parameters, we use Mnist dataset and fix the learning_rate == 0.005 and personal_learning_rate == 0.09 for all experiments. Other parameters are changed according to the experiments. Only in the experiments for the effects of $\beta$, in case $\beta = 4$, we use learning_rate == 0.003 to stable the algorithm.

CIFAR-10 dataset:

The implementation of Cifar10 has been finished. However, we haven't fine-tuned the parameters for all algorithms on Cifar10. Below is the comment to run cifar10 on pFedMe.


python3 main.py --dataset Cifar10 --model cnn --batch_size 20 --learning_rate 0.01 --personal_learning_rate 0.01 --beta 1 --lamda 15 --num_global_iters 800 --local_epochs 20 --algorithm pFedMe --numusers 5