Candis is an open source data mining suite (released under the GNU General Public License v3) for gene expression data that consists of a wide collection of tools you require, right from Data Extraction to Model Deployment. candis is built on top of the toolkit - CancerDiscover written by the bioinformaticians at HelikarLab.
Citation: If you use candis please cite our work
Mohammed, A., Biegert, G., Adamec, J., & Helikar, T. (2017). Identification of potential tissue-specific cancer biomarkers and development of cancer versus normal genomic classifiers. Oncotarget, 8(49), 85692-85715. https://doi.org/10.18632/oncotarget.21127
Or
Mohammed, A., Biegert, G., Adamec, J., & Helikar, T. (2018). CancerDiscover: An integrative pipeline for cancer biomarker and cancer class prediction from high-throughput sequencing data. Oncotarget, 9(2), 2565-2573. https://doi.org/10.18632/oncotarget.23511
WARNING: candis currently is still in dev
mode and not production-ready yet. In case if you run across bugs or errors, raise an issue over here.
Assuming you've installed dependencies, simply
$ pip install candis
$ curl -sL git.io/install-candis | python # with dependencies
... and launch candis
's development server:
$ candis
To install candis right from scratch, check out our exhaustive guides:
You can also attempt to install candis via Docker as follows:
$ docker pull helikarlab/candis
... and simply run the image optionally mapping the port 5000.
$ docker run -p 8888:5000 helikarlab/candis
OR
After cloning the repository, build from the updated Dockerfile and docker-compose.yml:
For development:
$ ./manage up -d --build
For production:
$ CANDIS_ENVIRONMENT=production ./manage up -d --build
Then go to localhost:5000 in your browser to open the app.
$ ./manage [service] [command]
$ ./manage db backup # Backup the database
$ ./manage db restore /path/to/backup # Restore a snapshot
$ ./manage db backups # List all backups
Launching the RIA (Rich Internet Application)
via CLI
$ candis
OR
$ python -m candis
via Python
>>> import candis
>>> candis.main()
Using the CLI (Command Line Interface)
$ candis --cdata path/to/data.cdata --config path/to/config.json
Using the Jupyter Notebook from inside the docker container
$ docker-compose exec app jupyter notebook --ip 0.0.0.0 --no-browser --allow-root
Converting a CDATA to an ARFF file
>>> import candis
>>> cdata = candis.cdata.read('path/to/data.cdata')
Then, simply use the CData.toARFF
API:
>>> cdata.toARFF('path/to/data.arff')
Running a Pipeline
.
>>> pipe = candis.Pipeline()
>>> pipe.run(cdata)
>>> while pipe.status == candis.Pipeline.RUNNING:
... # do something while pipeline is running
Dr. Tomas Helikar thelikar2@unl.edu Principal Investigator |
Dr. Akram Mohammed akrammohd@gmail.com Author and Maintainer |
Achilles Rasquinha achillesrasquinha@gmail.com Author and Maintainer |
Rupav Jain rupavwinchester@gmail.com Author and Maintainer |
This software has been released under the GNU General Public License v3.