JuliaAlgebra / MultivariatePolynomials.jl

Multivariate polynomials interface
https://juliaalgebra.github.io/MultivariatePolynomials.jl/stable/
Other
134 stars 27 forks source link
julia multivariate-polynomials polynomials

Multivariate Polynomials

Documentation Build Status Social References to cite
Build Status Gitter DOI
Codecov branch

WARNING MultivariatePolynomials v0.5 has a few breaking changes including the change in the order of monomials. This means that the leading term will now appear last in the order of monomials instead of first.

This package provides an interface for manipulating multivariate polynomials. Implementing algorithms on polynomials using this interface will allow the algorithm to work for all polynomials implementing the interface.

The interface contains functions for accessing the coefficients, monomials, terms of the polynomial, defines arithmetic operations on them, rational functions, division with remainder, calculus/differentiation and evaluation/substitution.

Documentation

Citing

Please cite the JuliaCon 2022 presentation [Slides]. See CITATION.bib for the BibTeX.

Examples

Below is a simple usage example

using TypedPolynomials
@polyvar x y # assigns x (resp. y) to a variable of name x (resp. y)
p = 2x + 3.0x*y^2 + y
@test differentiate(p, x) # compute the derivative of p with respect to x
@test differentiate.(p, (x, y)) # compute the gradient of p
@test p((x, y)=>(y, x)) # replace any x by y and y by x
@test subs(p, y=>x^2) # replace any occurence of y by x^2
@test p(x=>1, y=>2) # evaluate p at [1, 2]

Below is an example with @polyvar x[1:3]

using TypedPolynomials
A = rand(3, 3)
@polyvar x[1:3] # assign x to a tuple of variables x1, x2, x3
p = sum(x .* x) # x_1^2 + x_2^2 + x_3^2
subs(p, x[1]=>2, x[3]=>3) # x_2^2 + 13
p(x=>A*vec(x)) # corresponds to dot(A*x, A*x), need vec to convert the tuple to a vector

Ecosystem

The following packages provides multivariate polynomials that implement the interface:

The following packages extend/use the interface:

See also