Kismuz / btgym

Scalable, event-driven, deep-learning-friendly backtesting library
https://kismuz.github.io/btgym/
GNU Lesser General Public License v3.0
988 stars 261 forks source link
a3c advantage-actor-critic algorithmic-trading-library algoritmic-trading backtesting-trading-strategies backtrader deep-reinforcement-learning gym-environment hacktoberfest openai-gym policy-gradient policy-optimisation quantitive-finance reinforcement-learning statistical-arbitrage tensorflow time-series unreal
...Minimizing the mean square error on future experience.  - Richard S. Sutton

BTGym

Scalable event-driven RL-friendly backtesting library. Build on top of Backtrader with OpenAI Gym environment API.

Backtrader is open-source algorithmic trading library:
GitHub: http://github.com/mementum/backtrader
Documentation and community:
http://www.backtrader.com/

OpenAI Gym is..., well, everyone knows Gym:
GitHub: http://github.com/openai/gym
Documentation and community:
https://gym.openai.com/


Outline

General purpose of this project is to provide gym-integrated framework for running reinforcement learning experiments in [close to] real world algorithmic trading environments.

DISCLAIMER:
Code presented here is research/development grade.
Can be unstable, buggy, poor performing and is subject to change.

Note that this package is neither out-of-the-box-moneymaker, nor it provides ready-to-converge RL solutions.
Think of it as framework for setting experiments with complex non-stationary stochastic environments.

As a research project BTGym in its current stage can hardly deliver easy end-user experience in as sense that
setting meaninfull  experiments will require some practical programming experience as well as general knowledge
of reinforcement learning theory.

News and update notes


Contents


Installation

It is highly recommended to run BTGym in designated virtual environment.

Clone or copy btgym repository to local disk, cd to it and run: pip install -e . to install package and all dependencies:

git clone https://github.com/Kismuz/btgym.git

cd btgym

pip install -e .

To update to latest version::

cd btgym

git pull

pip install --upgrade -e .
Notes:
  1. BTGym requres Matplotlib version 2.0.2, downgrade your installation if you have version 2.1:

    pip install matplotlib==2.0.2

  2. LSOF utility should be installed to your OS, which can not be the default case for some Linux distributives, see: https://en.wikipedia.org/wiki/Lsof


Quickstart

Making gym environment with all parmeters set to defaults is as simple as:

from btgym import BTgymEnv

MyEnvironment = BTgymEnv(filename='../examples/data/DAT_ASCII_EURUSD_M1_2016.csv',)

Adding more controls may look like:

from gym import spaces
from btgym import BTgymEnv

MyEnvironment = BTgymEnv(filename='../examples/data/DAT_ASCII_EURUSD_M1_2016.csv',
                         episode_duration={'days': 2, 'hours': 23, 'minutes': 55},
                         drawdown_call=50,
                         state_shape=dict(raw=spaces.Box(low=0,high=1,shape=(30,4))),
                         port=5555,
                         verbose=1,
                         )
See more options at Documentation: Quickstart >>
and how-to's in Examples directory >>.

General description

Problem setting

Data selection options for backtest agent training:

Notice: data shaping approach is under development, expect some changes. [7.01.18]


Documentation and Community


Known bugs and limitations:


TODO's and Road Map:

News and updates:

profile for Andrew Muzikin on Stack Exchange, a network of free, community-driven Q&A sites