Lilac-Lee / FastNSF

Fast Neural Scene Flow (ICCV 2023)
https://Lilac-Lee.github.io/FastNSF
MIT License
71 stars 4 forks source link
3d-vision autonomous-driving computer-vision deep-learning iccv2023 implicit-neural-representation runtime-optimization scene-flow

FastNSF -- Fast Neural Scene Flow

License: MIT

Xueqian Li, Jianqiao Zheng, Francesco Ferroni, Jhony Kaesemodel Pontes, Simon Lucey.

19th International Conference on Computer Vision (ICCV, 2023)

Project page: https://Lilac-Lee.github.io/FastNSF

arXiv link: https://arxiv.org/pdf/2304.09121.pdf

Update:


Scene flow is an important problem as it provides low-level motion cues for many downstream tasks. State-of-the-art learning methods are usually fast and can achieve impressive performance on in-domain data, but usually fail to generalize to out-of-the-distribution (OOD) data or handle dense point clouds. In this paper, we focus on a runtime optimization-based neural scene flow pipeline. In (a) one can see its application in the densification of lidar. However, in (c) one sees that the major drawback is the extensive computation time. We identify that the common speedup strategy in network architectures for coordinate networks has little effect on scene flow acceleration [see green (b)] unlike image reconstruction [see pink (b)]. With the dominant computational burden stemming instead from the Chamfer loss function, we propose to use a distance transform-based loss function to accelerate [see purple (b)], which achieves up to 30$\times$ speedup and on-par estimation performance compared to NSFP [see (c)]. When tested on 8k points, it is as efficient [see (c)] as leading learning methods, achieving real-time performance.


Prerequisites

This code is based on PyTorch implementation, and tested on PyTorch=1.13.0, Python=3.10.8 with CUDA 11.6 or PyTorch=1.12.0, Python=3.9.15 with CUDA 11.6. But it should work fine with higher version of PyTorch.

A simple installation is bash ./install.sh.

For a detailed installation guide, please go to requirements.yml.

Dataset

We provide datasets we used in our paper. You may download datasets used in the paper from these links:

After you download the dataset, you can create a symbolic link in the ./dataset folder as ./dataset/argoverse and ./dataset/waymo.

UPDATE: for Argoverse scene flow dataset preprocessing, please refer to Neural Scene Flow Prior; for Waymo Open scene flow dataset preprocessing, please refer to this instruction.


2D BEV scene flow optimization demo

Open In Colab

Local source notebook could be found here.


Optimization


Acknowledgement

Neural Scene Flow Prior

FastGeodis: Fast Generalised Geodesic Distance Transform

Contributing

If you find the project useful for your research, you may cite,

@InProceedings{Li_2023_ICCV,
  title={Fast Neural Scene Flow},
  author={Li, Xueqian and Zheng, Jianqiao and Ferroni, Francesco and Pontes, Jhony Kaesemodel and Lucey, Simon},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  month={October},
  year={2023},
  pages={9878-9890}
}