pytorch 1.10.0 scikit-image 0.20.0 numpy 1.23.5 opencv-python 4.7.0.72 scikit-learn 1.2.2 monai 1.1.0 d2l 0.17.6 timm 0.6.12 einops 0.6.0
The dataset for model training and validation/testing is openly available here: https://osf.io/xmes4/ Please download the dataset and put them under /dataset
The frequency-level images of https://osf.io/xmes4/ is SR_result and the edge images is edge.
Please unzip these files and place the folders in the root directory, like
'TransOrga/Dataset',
'TransOrga/SR_results',
'TransOrga/edge_results'.
If you want to utilize your data: Please first obtain the frequency-level images using SRNET.py
(Please change the folder dirs as your owns.)
Our pretrained model is here .
Download the pretrained model and put it in 'checkpoints/'.
create 'log_results/' as the output folder.
run test.py to obtain the results.
You can download the official pretrained vit-base model here.
ACC organoid | Model | Dice ↑ | mIoU↑ | Precision↑ | Recall↑ | F1-score↑ |
---|---|---|---|---|---|---|
SegNet | 0.798 | 0.664 | 0.579 | 0.803 | 0.630 | |
A-Unet | 0.884 | 0.791 | 0.671 | 0.952 | 0.783 | |
OrganoID | 0.848 | 0.736 | 0.622 | 0.866 | 0.716 | |
Ours | 0.913 | 0.840 | 0.791 | 0.903 | 0.843 |
Colon organoid | Model | Dice↑ | mIoU↑ | Precision↑ | Recall↑ | F1-score↑ |
---|---|---|---|---|---|---|
SegNet | 0.864 | 0.761 | 0.742 | 0.769 | 0.738 | |
A-Unet | 0.877 | 0.781 | 0.645 | 0.952 | 0.764 | |
OrganoID | 0.867 | 0.766 | 0.674 | 0.850 | 0.745 | |
Ours | 0.919 | 0.851 | 0.786 | 0.918 | 0.844 |
Lung organoid | Model | Dice↑ | mIoU↑ | Precision↑ | Recall↑ | F1-score↑ |
---|---|---|---|---|---|---|
SegNet | 0.877 | 0.781 | 0.903 | 0.730 | 0.801 | |
A-Unet | 0.948 | 0.900 | 0.892 | 0.946 | 0.917 | |
OrganoID | 0.911 | 0.836 | 0.794 | 0.938 | 0.858 | |
Ours | 0.946 | 0.898 | 0.921 | 0.910 | 0.915 |
PDAC organoid | Model | Dice↑ | mIoU↑ | Precision↑ | Recall↑ | F1-score↑ |
---|---|---|---|---|---|---|
SegNet | 0.875 | 0.778 | 0.740 | 0.855 | 0.783 | |
A-Unet | 0.889 | 0.801 | 0.763 | 0.875 | 0.806 | |
OrganoID | 0.859 | 0.752 | 0.702 | 0.836 | 0.752 | |
Ours | 0.898 | 0.814 | 0.778 | 0.885 | 0.821 |