Qengineering / YoloFastest-ncnn-Jetson-Nano

YoloFastestV2 for a Jetson Nano
https://qengineering.eu/deep-learning-examples-on-raspberry-32-64-os.html
BSD 3-Clause "New" or "Revised" License
15 stars 1 forks source link
aarch64 cpp deep-learning jetson-nano ncnn ncnn-model yolofastest yolofastest-v2

YoloFastest Jetson-Nano

output image

YoloFastest V2 with the ncnn framework.

License

A truly impressive YOLO family member. As long as the images are not too large and/or the objects are too small, very high frame rates are achieved with more than acceptable accuracy. Thanks dog-qiuqiu for all the hard work.

Special adapt for a Jetson Nano, see Q-engineering deep learning examples


Benchmark.

Model size mAP Jetson Nano RPi 4 1950 RPi 5 2900 Rock 5
NanoDet 320x320 20.6 26.2 FPS 13.0 FPS 43.2 FPS 36.0 FPS
NanoDet Plus 416x416 30.4 18.5 FPS 5.0 FPS 30.0 FPS 24.9 FPS
PP-PicoDet 320x320 27.0 24.0 FPS 7.5 FPS 53.7 FPS 46.7 FPS
YoloFastestV2 352x352 24.1 38.4 FPS 18.8 FPS 78.5 FPS 65.4 FPS
YoloV2 20 416x416 19.2 10.1 FPS 3.0 FPS 24.0 FPS 20.0 FPS
YoloV3 20 352x352 tiny 16.6 17.7 FPS 4.4 FPS 18.1 FPS 15.0 FPS
YoloV4 416x416 tiny 21.7 16.1 FPS 3.4 FPS 26.8 FPS 22.4 FPS
YoloV4 608x608 full 45.3 1.3 FPS 0.2 FPS 1.82 FPS 1.5 FPS
YoloV5 640x640 small 22.5 5.0 FPS 1.6 FPS 14.9 FPS 12.5 FPS
YoloV6 640x640 nano 35.0 10.5 FPS 2.7 FPS 25.0 FPS 20.8 FPS
YoloV7 640x640 tiny 38.7 8.5 FPS 2.1 FPS 21.5 FPS 17.9 FPS
YoloV8 640x640 nano 37.3 14.5 FPS 3.1 FPS 20.0 FPS 16.3 FPS
YoloV8 640x640 small 44.9 4.5 FPS 1.47 FPS 11.0 FPS 9.2 FPS
YoloX 416x416 nano 25.8 22.6 FPS 7.0 FPS 34.2 FPS 28.5 FPS
YoloX 416x416 tiny 32.8 11.35 FPS 2.8 FPS 21.8 FPS 18.1 FPS
YoloX 640x640 small 40.5 3.65 FPS 0.9 FPS 9.0 FPS 7.5 FPS

20 Recognize 20 objects (VOC) instead of 80 (COCO)


Dependencies.

To run the application, you have to:


Installing the app.

To extract and run the network in Code::Blocks
$ mkdir MyDir
$ cd MyDir
$ wget https://github.com/Qengineering/YoloFastestV2-ncnn-Raspberry-Pi-4/archive/refs/heads/main.zip
$ unzip -j master.zip
Remove master.zip, LICENSE and README.md as they are no longer needed.
$ rm master.zip
$ rm LICENSE
$ rm README.md

Your MyDir folder must now look like this:
James.mp4
parking.jpg
parking_tiny.jpg
YoloFastestV2.cpb
mainFV2.cpp
yolo-fastestv2.cpp
yolo-fastestv2.h
yolo-fastestv2-opt.bin
yolo-fastestv2-opt.param


Running the app.

To run the application load the project file YoloFastestV2.cbp in Code::Blocks. More info or
if you want to connect a camera to the app, follow the instructions at Hands-On.

Many thanks to dog-qiuqiu

output image
output image
output image
output image


paypal