RobTillaart / SHT85

Arduino library for the SHT85 temperature and humidity sensor
MIT License
12 stars 4 forks source link
arduino humidity temperature

Arduino CI Arduino-lint JSON check GitHub issues

License: MIT GitHub release PlatformIO Registry

SHT85

Arduino library for the SHT85 temperature and humidity sensor.

Based upon the SHT31 library - https://github.com/RobTillaart/SHT31 however this library will be leading in the future as it implements derived classes for the following sensors: SHT30, SHT31, SHT35 and SHT85.

WARNING to keep self-heating below 0.1°C, the SHT85 sensor should not be used for more than 10% of the time.

Description

Always check datasheet before connecting!

    //  TOPVIEW      SHT85
    //             +-------+
    //  +-----\    | SDA 4 -----
    //  | /-+  ----+ GND 3 -----
    //  | +-+  ----+ +5V 2 -----
    //  +-----/    | SCL 1 -----
    //             +-------+

The SHT85 sensors should work (I2C) up to 1000 KHz. During tests with an Arduino UNO it stopped between 500 - 550 KHz. So to be safe I recommend not to use the sensor above 400 KHz. Also the differences in read time becomes quite small. (max 15% gain).

See indicative output example sketch. SPS (= samples per second) are added later.

I2C speed read ms SPS notes
50 KHz 6.60 123
100 KHz 5.11 140 default
150 KHz 4.79
200 KHz 4.64 140
250 KHz 4.56
300 KHz 4.50 164
350 KHz 4.47
400 KHz 4.45 164
450 KHz 4.43
500 KHz 4.42 163
550 KHz ---- fail

At 10% load the SHT85 can be used to make about 10 - 15 SPS.

Compatibility

The SHT85 is protocol compatible with the SHT3x series. Main difference is the accuracy and the SHT85 only has address 0x44. Compare the data sheets to see all differences.

Accuracy table:

Sensor Temperature Humidity Verified }
SHT30 ~0.3° 2.0% N
SHT31 ~0.3° 1.5% Y
SHT35 ~0.2° 1.5% N
SHT85 ~0.2° 1.5% Y

Note: The SHT40, SHT41 and SHT45 are not protocol compatible with SHT3x and SHT85. The SHT4x series is slightly faster than the SHT3x series.

Multiple SHT85

The SHT3x comes with two I2C address options, 0x44 and 0x45. The SHT85 only has 0x44 as I2C address, so it is not possible to have more than one on a single I2C bus. This means you need to use multiple I2C buses (if your board support this), a software I2C (below) or an I2C multiplexer e.g. https://github.com/RobTillaart/TCA9548

0.6.0 Breaking change

Version 0.6.0 introduced a breaking change. The parameters from begin() moved to the constructor. You cannot set the pins in begin() any more. This reduces the dependency of processor dependent Wire implementations. The user has to call Wire.begin() and can optionally set the Wire pins before calling begin().

Related

An elaborated library for the SHT31 sensor can be found here

Dewpoint, heatindex, related functions and conversions.

I2C multiplexer

Interface

#include "SHT85.h"

Constructor

Status

Synchronous read

Note: the medium level is not supported (yet).

Asynchronous read

See async example for usage.

Temperature and humidity

Note that the temperature and humidity values are recalculated on every call to getHumidity() and getTemperature(). If you're worried about the extra cycles, you should make sure to cache these values or only request them after you've performed a new read().

The getRawHumidity() and getRawTemperature() can be used to minimize storage or communication as the data type is 50% smaller. Another application is faster comparison with a previous value or threshold. However comparisons are quite fast.

The library has no CelsiusToRaw() function although this is relative easy.

rawTemperatureC = (tempC + 45) * (65535 / 175.0); 
rawTemperatureF = (tempF + 49) * (65535 / 315.0); 
rawHumidity     = humidity * 655.35;

Temperature and humidity offset

Default the offset is zero for both temperature and humidity. These functions allows one to adjust them a little. Note there is no limit to the offset so one can use huge values. This allows to use an offset of 273.15 effectively creating °Kelvin instead of Celsius.

Note: the offset is defined in degrees Celsius. To set an offset in degrees Fahrenheit, multiply the Fahrenheit offset with 0.55555556 to get Celsius steps (divide by 1.8 is slower). So an offset of 4 °F becomes 2.2222 °C.

Error interface

Error Symbolic Description
0x00 SHT_OK no error
0x81 SHT_ERR_WRITECMD I2C write failed
0x82 SHT_ERR_READBYTES I2C read failed
0x83 SHT_ERR_HEATER_OFF Could not switch off heater
0x84 SHT_ERR_NOT_CONNECT Could not connect
0x85 SHT_ERR_CRC_TEMP CRC error in temperature
0x86 SHT_ERR_CRC_HUM CRC error in humidity
0x87 SHT_ERR_CRC_STATUS CRC error in status field
0x88 SHT_ERR_HEATER_COOLDOWN Heater need to cool down
0x89 SHT_ERR_HEATER_ON Could not switch on heater
0x8A SHT_ERR_SERIAL Could not read serial number

Heater interface

WARNING: Do not use heater for long periods.

Use the heater for max 180 seconds, and let it cool down 180 seconds = 3 minutes. Version 0.3.3 and up guards the cool down time by preventing switching the heater on within 180 seconds of the last switch off. Note: this guarding is not reboot persistent.

WARNING: The user is responsible to switch the heater off manually!

The class does NOT do this automatically. Switch off the heater by explicitly calling heatOff() or indirectly by calling isHeaterOn().

Status fields

BIT Description value notes
15 Alert pending status 0 no pending alerts
1 at least one pending alert - default
14 Reserved 0
13 Heater status 0 Heater OFF - default
1 Heater ON
12 Reserved 0
11 Humidity tracking alert 0 no alert - default
1 alert
10 Temperature tracking alert 0 no alert - default
1 alert
9-5 Reserved 00000 reserved
4 System reset detected 0 no reset since last ‘clear status register’ command
1 reset detected (hard or soft reset command or supply fail) - default
3-2 Reserved 00
1 Command status 0 last command executed successfully
1 last command not processed. Invalid or failed checksum
0 Write data checksum status 0 checksum of last write correct
1 checksum of last write transfer failed

SHT85 specific

Future

Must

Should

Could

Won't

Support

If you appreciate my libraries, you can support the development and maintenance. Improve the quality of the libraries by providing issues and Pull Requests, or donate through PayPal or GitHub sponsors.

Thank you,