TensorRT 10 is supported
YOLOv11, YOLOv11-obb and YOLOv11-seg detector worked with TensorRT! Export pretrained Pytorch models here (ultralytics/ultralytics) to onnx format and run Multitarget-tracker with -e=6 example
YOLOv8-obb detector worked with TensorRT! Export pretrained Pytorch models here (ultralytics/ultralytics) to onnx format and run Multitarget-tracker with -e=6 example
YOLOv10 detector worked with TensorRT! Export pretrained Pytorch models here (THU-MIG/yolov10) to onnx format and run Multitarget-tracker with -e=6 example
YOLOv9 detector worked with TensorRT! Export pretrained Pytorch models here (WongKinYiu/yolov9) to onnx format and run Multitarget-tracker with -e=6 example
YOLOv8 instance segmentation models worked with TensorRT! Export pretrained Pytorch models here (ultralytics/ultralytics) to onnx format and run Multitarget-tracker with -e=6 example
Re-identification model osnet_x0_25_msmt17 from mikel-brostrom/yolo_tracking
1.1. Based on background substraction: built-in Vibe (tracking::Motion_VIBE), SuBSENSE (tracking::Motion_SuBSENSE) and LOBSTER (tracking::Motion_LOBSTER); MOG2 (tracking::Motion_MOG2) from opencv; MOG (tracking::Motion_MOG), GMG (tracking::Motion_GMG) and CNT (tracking::Motion_CNT) from opencv_contrib. For foreground segmentation used contours from OpenCV with result as cv::RotatedRect
1.2. Haar face detector from OpenCV (tracking::Face_HAAR)
1.3. HOG pedestrian detector from OpenCV (tracking::Pedestrian_HOG) and C4 pedestrian detector from sturkmen72 (tracking::Pedestrian_C4)
1.4. Detector based on opencv_dnn (tracking::DNN_OCV) and pretrained models from chuanqi305 and pjreddie
1.5. YOLO detector (tracking::Yolo_Darknet) with darknet inference from AlexeyAB and pretrained models from pjreddie
1.6. YOLO detector (tracking::Yolo_TensorRT) with NVidia TensorRT inference from enazoe and pretrained models from pjreddie
1.7. You can to use custom detector with bounding or rotated rectangle as output.
2.1. Hungrian algorithm (tracking::MatchHungrian) with cubic time O(N^3) where N is objects count
2.2. Algorithm based on weighted bipartite graphs (tracking::MatchBipart) from rdmpage with time O(M * N^2) where N is objects count and M is connections count between detections on frame and tracking objects. It can be faster than Hungrian algorithm
2.3. Distance from detections and objects: euclidean distance in pixels between centers (tracking::DistCenters), euclidean distance in pixels between rectangles (tracking::DistRects), Jaccard or IoU distance from 0 to 1 (tracking::DistJaccard)
3.1. Linear Kalman filter from OpenCV (tracking::KalmanLinear)
3.2. Unscented Kalman filter from OpenCV (tracking::KalmanUnscented) with constant velocity or constant acceleration models
3.3. Kalman goal is only coordinates (tracking::FilterCenter) or coordinates and size (tracking::FilterRect)
3.4. Simple Abandoned detector
3.5. Line intersection counting
4.1. No search (tracking::TrackNone)
4.2. Built-in DAT (tracking::TrackDAT) from foolwood, STAPLE (tracking::TrackSTAPLE) from xuduo35 or LDES (tracking::TrackLDES) from yfji; KCF (tracking::TrackKCF), MIL (tracking::TrackMIL), MedianFlow (tracking::TrackMedianFlow), GOTURN (tracking::TrackGOTURN), MOSSE (tracking::TrackMOSSE) or CSRT (tracking::TrackCSRT) from opencv_contrib
With this option the tracking can work match slower but more accuracy.
5.1. Syncronous pipeline - SyncProcess:
This pipeline is good if all algorithms are fast and works faster than time between two frames (40 ms for device with 25 fps). Or it can be used if we have only 1 core for all (no parallelization).
5.2. Pipeline with 2 threads - AsyncProcess:
So we have a latency on 1 frame but on two free CPU cores we can increase performance on 2 times.
5.3. Fully acynchronous pipeline can be used if the objects detector works with low fps and we have a free 2 CPU cores. In this case we use 4 threads:
This pipeline can used with slow but accuracy DNN and track objects in intermediate frame in realtime without latency.
Also you can read Wiki in Russian.
Full build:
git clone https://github.com/Smorodov/Multitarget-tracker.git
cd Multitarget-tracker
mkdir build
cd build
cmake . .. -DUSE_OCV_BGFG=ON -DUSE_OCV_KCF=ON -DUSE_OCV_UKF=ON -DBUILD_YOLO_LIB=ON -DBUILD_YOLO_TENSORRT=ON -DBUILD_ASYNC_DETECTOR=ON -DBUILD_CARS_COUNTING=ON
make -j
How to run cmake on Windows for Visual Studio 15 2017 Win64: example. You need to add directory with cmake.exe to PATH and change build params in cmake.bat
Usage:
Usage:
./MultitargetTracker <path to movie file> [--example]=<number of example 0..7> [--start_frame]=<start a video from this position> [--end_frame]=<play a video to this position> [--end_delay]=<delay in milliseconds after video ending> [--out]=<name of result video file> [--show_logs]=<show logs> [--gpu]=<use OpenCL> [--async]=<async pipeline> [--res]=<csv log file> [--settings]=<ini file> [--batch_size=<number of frames>]
./MultitargetTracker ../data/atrium.avi -e=1 -o=../data/atrium_motion.avi
Press:
* 'm' key for change mode: play|pause. When video is paused you can press any key for get next frame.
* Press Esc to exit from video
Params:
1. Movie file, for example ../data/atrium.avi
2. [Optional] Number of example: 0 - MouseTracking, 1 - MotionDetector, 2 - FaceDetector, 3 - PedestrianDetector, 4 - OpenCV dnn objects detector, 5 - Yolo Darknet detector, 6 - YOLO TensorRT Detector, Cars counting
-e=0 or --example=1
3. [Optional] Frame number to start a video from this position
-sf=0 or --start_frame==1500
4. [Optional] Play a video to this position (if 0 then played to the end of file)
-ef=0 or --end_frame==200
5. [Optional] Delay in milliseconds after video ending
-ed=0 or --end_delay=1000
6. [Optional] Name of result video file
-o=out.avi or --out=result.mp4
7. [Optional] Show Trackers logs in terminal
-sl=1 or --show_logs=0
8. [Optional] Use built-in OpenCL
-g=1 or --gpu=0
9. [Optional] Use 2 threads for processing pipeline
-a=1 or --async=0
10. [Optional] Path to the csv file with tracking result
-r=res.csv or --res=res.csv
11. [Optional] Path to the ini file with tracker settings
-s=settings.ini or --settings=settings.ini
12. [Optional] Batch size - simultaneous detection on several consecutive frames
-bs=2 or --batch_size=1
More details here: How to run examples.
Build MTTracking in the usual way, and choose an installation prefix where the library will be installed (see CMake Documentation for the defaults).
In the build
directory run
$ cmake --install .
This will generate the CMake files needed to find the MTTracking package with libraries and include files for your project. E.g.
MTTrackingConfig.cmake
MTTrackingConfigVersion.cmake
MTTrackingTargets.cmake
In your CMake project, do the following:
find_package(MTTracking REQUIRED)
target_include_directories(MyProjectTarget PUBLIC ${MTTracking_INCLUDE_DIR})
target_link_libraries(MyProjectTarget PUBLIC MTTracking::mtracking MTTracking::mdetection)
You may need to provide CMake with the location to find the above .cmake
files, e.g.
$ cmake -DMTTracking_DIR=<location_of_cmake_files> ..
If CMake succeeds at finding the package, you can use MTTracking in your project e.g.
#include <mtracking/Ctracker.h>
//...
std::unique_ptr<BaseTracker> m_tracker;
TrackerSettings settings;
settings.SetDistance(tracking::DistJaccard);
m_tracker = BaseTracker::CreateTracker(settings);
//...
And so on.
Apache 2.0: LICENSE text