MetaLonDA (METAgenomic LONgitudinal Differential Abundance method) is a method that identifies the significant time intervals of microbial features in longitudinal studies. MetaLonDA has the ability to handle the inconsistencies and common challenges associated with human studies, such as variable sample collection times and uneven number of time points along the subjects’ longitudinal study. The method employs a negative binomial distribution in conjunction with a semi-parametric SS-ANOVA to model the read counts. Then, it performs the significance testing based on unit time intervals using permutation testing procedure.
This section details steps for installing and running MetaLonDA. If you experience difficulty installing or running the software, please contact (Ahmed Metwally: ametwall@stanford.edu).
Install the latest released version from CRAN: https://cran.r-project.org/web/packages/MetaLonDA/index.html
install.packages("MetaLonDA")
Download the latest development code of MetaLonDA from GitHub using devtools
library(devtools)
install_github("aametwally/MetaLonDA", ref = "master")
library(MetaLonDA)
## Load read counts of 8 features from 100 samples. Samples are from 2 groups, 5 subjects per group, and 10 time points per subject.
data(metalonda_test_data)
View(metalonda_test_data[,1:20])
## Create Group, Time, and ID annotation vectors
n.group = 2
n.sample = 5
n.timepoints = 10
Group = factor(c(rep("A", n.sample*n.timepoints), rep("B",n.sample*n.timepoints)))
Time = rep(rep(1:n.timepoints, times = n.sample), 2)
ID = factor(rep(1:(2*n.sample), each = n.timepoints))
## Define the prediction timeponits
points = seq(1, 10, length.out = 100)
## Identify significant time intervals of the 5th feature:
output.metalonda.f5 = metalonda(Count = metalonda_test_data[5,], Time = Time, Group = Group,
ID = ID, n.perm = 100, fit.method = "nbinomial", points = points,
text = rownames(metalonda_test_data)[5], parall = FALSE, pvalue.threshold = 0.05,
adjust.method = "BH", time.unit = "days", ylabel = "Normalized Count",
col = c("black", "green"), prefix = "Test_F5")
In our example, we used 20 permutations just to showcase how MetaLonDA works. In real analysis, this number should be much higher. Three figures are generated after running the above snippet:
## Identify significant time intervals for all features:
output.metalonda.all = metalondaAll(Count = metalonda_test_data, Time = Time, Group = Group,
ID = ID, n.perm = 100, fit.method = "nbinomial", num.intervals = 100,
parall = FALSE, pvalue.threshold = 0.05, adjust.method = "BH", time.unit = "hours",
norm.method = "none", prefix = "Test_metalondaALL", ylabel = "Read Counts",
col = c("black", "green"))
After running the above snippet for testing all features in the count matrix, along with the 2-3 figures for each feature, MetaLonDA produces the following two summary files:
MetaLonDA is under active research development. Please report any bugs/suggestions to Ahmed Metwally (ametwall@stanford.edu).