automl / DeepCAVE

An interactive framework to visualize and analyze your AutoML process in real-time.
https://automl.github.io/DeepCAVE/main/
Apache License 2.0
72 stars 11 forks source link
analysis automl hyperparameter-importance hyperparameters iml interactive real-time sampling-bias visualization
Logo

DeepCAVE

DeepCAVE is a visualization and analysis tool for AutoML, with a particular focus on hyperparameter optimization (HPO). Built on the Dash framework, it offers a fully interactive experience. The tool features a variety of plugins that enable efficient insight generation, aiding in understanding and debugging the application of HPO. Additionally, the powerful run interface and the modularized plugin structure allow extending the tool at any time effortlessly.

Configuration Footprint

Installation

First, make sure you have redis-server installed on your computer.

Afterwards, follow the instructions to install DeepCAVE:

conda create -n DeepCAVE python=3.9
conda activate DeepCAVE
conda install -c anaconda swig
pip install DeepCAVE

To load runs created with Optuna or the BOHB optimizer, you need to install the respective packages by running:

pip install deepcave[optuna]
pip install deepcave[bohb]

To try the examples for recording your results in DeepCAVE format, run this after installing:

pip install deepcave[examples]

If you want to contribute to DeepCAVE, use the following steps instead:

git clone https://github.com/automl/DeepCAVE.git
cd DeepCAVE
conda create -n DeepCAVE python=3.9
conda activate DeepCAVE
conda install -c anaconda swig
make install-dev

Please visit the documentation to get further help (e.g. if you cannot install redis server or if you are on MacOS).

Visualizing and Evaluating

The webserver as well as the queue/workers can be started by simply running:

deepcave --open

If you specify --open your webbrowser automatically opens at http://127.0.0.1:8050/. You can find more arguments and information (like using custom configurations) in the documentation.

Example runs

DeepCAVE comes with some pre-evaluated runs to get a feeling for what DeepCAVE can do.

If you cloned the repository from GitHub via git clone https://github.com/automl/DeepCAVE.git, you can try out some examples by exploring the logs directory inside the DeepCAVE dashboard. For example, if you navigate to logs/DeepCAVE, you can view the run mnist_pytorch if you hit the + button left to it.

Features

Interactive Interface

Comprehensive Analysis Tools

Flexible and Modular Architecture

Broad Optimizer Support

Developer and API Features

Citation

If you use DeepCAVE in one of your research projects, please cite our ReALML@ICML'22 workshop paper:

@misc{sass-realml2022,
    title = {DeepCAVE: An Interactive Analysis Tool for Automated Machine Learning},
    author = {Sass, René and Bergman, Eddie and Biedenkapp, André and Hutter, Frank and Lindauer, Marius},
    doi = {10.48550/ARXIV.2206.03493},
    url = {https://arxiv.org/abs/2206.03493},
    publisher = {arXiv},
    year = {2022},
    copyright = {arXiv.org perpetual, non-exclusive license}
}

Copyright (C) 2021-2024 The DeepCAVE Authors