cawa-93 / vite-electron-builder

Secure boilerplate for Electron app based on Vite. TypeScript + Vue/React/Angular/Svelte/Vanilla
MIT License
2.24k stars 249 forks source link
best-practices boilerplate electron electron-builder react template typescript vite vite-electron vue vue-tsc

[!Important] This project is mainrained by developer from Ukraine πŸ‡ΊπŸ‡¦

Due to the ongoing war resulting from Russia's full-scale invasion of Ukraine, I currently lack the time for the full development of this open-source project. My primary focus is on ensuring the well-being of myself and my family. I'll prioritize and review all new contributions as soon as possible.

If you can, please consider supporting Ukraine or me personally.

Thank you for your understanding and support.

Vite Electron Builder Boilerplate

This is a template for secure electron applications. Written following the latest safety requirements, recommendations and best practices.

Under the hood is Vite β€” A next-generation blazing fast bundler, and electron-builder for packaging.

Get started

Follow these steps to get started with the template:

  1. Click the Use this template button (you must be logged in) or just clone this repo.
  2. If you want to use another package manager you may need to edit .github/workflows since npm is used as default. (See also https://github.com/cawa-93/vite-electron-builder/issues/944)

    Note: This template configured to install peerDependencies automatically.

That's all you need. πŸ˜‰

❀️ If you like this template, don't forget to give a ⭐ or send support!

Features

Electron Electron version

Vite Vite version

Vite provides many useful features, such as: TypeScript, TSX/JSX, CSS/JSON Importing, CSS Modules , Web Assembly and much more.

See all Vite features.

TypeScript TypeScript version (optional)

Guide to disable typescript and remove dependencies

Vue Vue version (optional)

Find more forks πŸ”± for others frameworks or setups

Continuous Integration

Workflow graph

Publishing

Note: This template configured only for GitHub public repository, but electron-builder also supports other update distribution servers. Find more in electron-builder docs.

How it works

The template requires a minimum amount dependencies. Only Vite is used for building, nothing more.

Project Structure

The structure of this template is very similar to a monorepo. The entire source code of the project is divided into three modules (packages) that are each bundled independently:

Schematically, the structure of the application and the method of communication between packages can be depicted as follows:

flowchart TB;

packages/preload <-. IPC Messages .-> packages/main

    subgraph packages/main["packages/main (Shared beatween all windows)"]
    M[index.ts] --> EM[Electron Main Process Modules]
    M --> N2[Node.js API]
    end

subgraph Window["Browser Window"]
    subgraph packages/preload["packages/preload (Works in isolated context)"]
    P[index.ts] --> N[Node.js API]
    P --> ED[External dependencies]
    P --> ER[Electron Renderer Process Modules]
    end

    subgraph packages/renderer
    R[index.html] --> W[Web API]
    R --> BD[Bundled dependencies]
    R --> F[Web Frameworks]
    end
    end

packages/renderer -- Call Exposed API --> P

Build web resources

The main and preload packages are built in library mode as it is simple javascript. The renderer package builds as a regular web app.

Compile App

The next step is to package a ready to distribute Electron app for macOS, Windows and Linux with "auto update" support out of the box.

To do this, use electron-builder:

Working with dependencies

Because the renderer works and builds like a regular web application, you can only use dependencies that support the browser or compile to a browser-friendly format.

This means that in the renderer you are free to use any frontend dependencies such as Vue, React, lodash, axios and so on. However, you CANNOT use any native Node.js APIs, such as, systeminformation. These APIs are only available in a Node.js runtime environment and will cause your application to crash if used in the renderer layer. Instead, if you need access to Node.js runtime APIs in your frontend, export a function form the preload package.

All dependencies that require Node.js api can be used in the preload script.

Expose in main world

Here is an example. Let's say you need to read some data from the file system or database in the renderer.

In the preload context, create a function that reads and returns data. To make the function announced in the preload available in the render, you usually need to call the electron.contextBridge.exposeInMainWorld. However, this template uses the unplugin-auto-expose plugin, so you just need to export the method from the preload. The exposeInMainWorld will be called automatically.

// preload/index.ts
import { readFile } from 'node:fs/promises';

// Encapsulate types if you use typescript
interface UserData {
  prop: string
}

// Encapsulate all node.js api
// Everything you exported from preload/index.ts may be called in renderer
export function getUserData(): Promise<UserData> {
  return readFile('/path/to/file/in/user/filesystem.json', {encoding:'utf8'}).then(JSON.parse);
}

Now you can import and call the method in renderer

// renderer/anywere/component.ts
import { getUserData } from '#preload'
const userData = await getUserData()

Find more in Context Isolation tutorial.

Working with Electron API

Although the preload has access to all of Node.js's API, it still runs in the BrowserWindow context, so a limited electron modules are available in it. Check the electron docs for full list of available methods.

All other electron methods can be invoked in the main.

As a result, the architecture of interaction between all modules is as follows:

sequenceDiagram
renderer->>+preload: Read data from file system
preload->>-renderer: Data
renderer->>preload: Maximize window
activate preload
preload-->>main: Invoke IPC command
activate main
main-->>preload: IPC response
deactivate main
preload->>renderer: Window maximized
deactivate preload

Find more in Inter-Process Communication tutorial.

Modes and Environment Variables

All environment variables are set as part of the import.meta, so you can access them vie the following way: import.meta.env.

Note: If you are using TypeScript and want to get code completion you must add all the environment variables to the ImportMetaEnv in types/env.d.ts.

The mode option is used to specify the value of import.meta.env.MODE and the corresponding environment variables files that need to be loaded.

By default, there are two modes:

When running the build script, the environment variables are loaded from the following files in your project root:

.env                # loaded in all cases
.env.local          # loaded in all cases, ignored by git
.env.[mode]         # only loaded in specified env mode
.env.[mode].local   # only loaded in specified env mode, ignored by git

Warning: To prevent accidentally leaking env variables to the client, only variables prefixed with VITE_ are exposed to your Vite-processed code.

For example let's take the following .env file:

DB_PASSWORD=foobar
VITE_SOME_KEY=123

Only VITE_SOME_KEY will be exposed as import.meta.env.VITE_SOME_KEY to your client source code, but DB_PASSWORD will not.

You can change that prefix or add another. See envPrefix

Contribution

See Contributing Guide.