hustvl / VAD

[ICCV 2023] VAD: Vectorized Scene Representation for Efficient Autonomous Driving
https://arxiv.org/abs/2303.12077
Apache License 2.0
735 stars 78 forks source link
autonomous-driving end-to-end

VAD v1 & v2

project page

https://user-images.githubusercontent.com/45144254/229673708-648e8da5-4c70-4346-9da2-423447d1ecde.mp4

https://github.com/hustvl/VAD/assets/45144254/153b9bf0-5159-46b5-9fab-573baf5c6159

VAD: Vectorized Scene Representation for Efficient Autonomous Driving

Bo Jiang1*, Shaoyu Chen1*, Qing Xu2, Bencheng Liao1, Jiajie Chen2, Helong Zhou2, Qian Zhang2, Wenyu Liu1, Chang Huang2, Xinggang Wang1,†

1 Huazhong University of Science and Technology, 2 Horizon Robotics

*: equal contribution, : corresponding author.

arXiv Paper, ICCV 2023

News

Introduction

VAD is a vectorized paradigm for end-to-end autonomous driving.

Models

Method Backbone avg. L2 avg. Col. FPS Config Download
VAD-Tiny R50 0.78 0.38 16.8 config model
VAD-Base R50 0.72 0.22 4.5 config model

Results

Method L2 (m) 1s L2 (m) 2s L2 (m) 3s Col. (%) 1s Col. (%) 2s Col. (%) 3s FPS
ST-P3 1.33 2.11 2.90 0.23 0.62 1.27 1.6
UniAD 0.48 0.96 1.65 0.05 0.17 0.71 1.8
VAD-Tiny 0.46 0.76 1.12 0.21 0.35 0.58 16.8
VAD-Base 0.41 0.70 1.05 0.07 0.17 0.41 4.5
Method Town05 Short DS Town05 Short RC Town05 Long DS Town05 Long RC
CILRS 7.47 13.40 3.68 7.19
LBC 30.97 55.01 7.05 32.09
Transfuser* 54.52 78.41 33.15 56.36
ST-P3 55.14 86.74 11.45 83.15
VAD-Base 64.29 87.26 30.31 75.20

*: LiDAR-based method.

Getting Started

Catalog

Contact

If you have any questions or suggestions about this repo, please feel free to contact us (bjiang@hust.edu.cn, outsidercsy@gmail.com).

Citation

If you find VAD useful in your research or applications, please consider giving us a star 🌟 and citing it by the following BibTeX entry.

@article{jiang2023vad,
  title={VAD: Vectorized Scene Representation for Efficient Autonomous Driving},
  author={Jiang, Bo and Chen, Shaoyu and Xu, Qing and Liao, Bencheng and Chen, Jiajie and Zhou, Helong and Zhang, Qian and Liu, Wenyu and Huang, Chang and Wang, Xinggang},
  journal={ICCV},
  year={2023}
}

@article{chen2024vadv2,
  title={Vadv2: End-to-end vectorized autonomous driving via probabilistic planning},
  author={Chen, Shaoyu and Jiang, Bo and Gao, Hao and Liao, Bencheng and Xu, Qing and Zhang, Qian and Huang, Chang and Liu, Wenyu and Wang, Xinggang},
  journal={arXiv preprint arXiv:2402.13243},
  year={2024}
}

License

All code in this repository is under the Apache License 2.0.

Acknowledgement

VAD is based on the following projects: mmdet3d, detr3d, BEVFormer and MapTR. Many thanks for their excellent contributions to the community.