Implementation of EfficientNetV2 backbone for detecting objects using Detectron2.
The EfficientNetV2
backbone is wrapped to detectron2
and uses the Fast/Mask RCNN heads of detectron2 for detecting objects.
The architecture of the network and detector is as in the figure below.
Architecture of the network for detection.
The results of detection on 2017 COCO detection dataset.
Clone the repository
$ git clone https://github.com/iKrishneel/efficient_net_v2.git
Installing on the host or virtualenv.
$ pip install -e efficient_net_v2
Using docker image
$ cd efficient_net_v2
$ IMG_NAME=effnet2_detect
$ docker buildx build -t ${IMG_NAME}:latest .
The trainin procedure and arugments are same as detectron2
. Please refer to the detectron2
documentations for more information the the training.
$ cd efficient_net_v2/efficient_net_v2
# common required arugments for training
$ NUM_GPUS=2 # number of GPUS for training
$ WEIGHTS='' # path to the weight file / or you can provide this directly on the config
$ LOG_DIR='../logs/' # logging folder
# To start training
$ python build.py --config-file ./config/effnet_coco.yaml --num_gpus ${NUM_GPUS} --weights ${WEIGHTS} --output_dir ${LOG_DIR}