klaudiosinani / dsforest

Disjoint-set forests for ES6
MIT License
16 stars 0 forks source link
disjoint es6 find forest set typescript union

Dsforest

Disjoint-set forests for ES6

Build Status Coverage Status

Description

ES6 implementation of the disjoint-set forest data structure with TypeScript support.

Visit the contributing guidelines to learn more on how to translate this document into more languages.

Contents

Install

Yarn

yarn add dsforest

NPM

npm install dsforest

In Depth

A disjoint-set forest data structure, also known as union–find data structure or merge–find set, is a data structure that tracks a set of elements partitioned into several disjoint, non-overlapping subsets. It provides near-constant-time operations, bounded by the inverse Ackermann function, for the following operations:

This performance is achieved through the combined usage of the union by rank and path compression heuristics, which enable the disjoint-set forest to become an asymptotically optimal data structure.

Every disjoint-set forest consists of a number of elements, where to each element corresponds a unique id, a parent pointer, and a rank value. The parent pointers of the elements are arranged to form one or more trees, each representing a set. If an element's parent pointer points to the element itself, then the element is the root of its tree, thus the representative member of its set. Also, the elements that do not point to themselves, are part of the set identified by following the chain of parent pointers upwards, know as find-path, until a representative element is reached, at the root of the tree.

Dsforest disjoint-set forests are represented compactly in memory through associative arrays, composed of (childID, parentValue) key-value pairs, where each parent element (value) is indicated by its unique child's id (key). By default, the identity function (x => x) is used to map element values to their unique ids, though a custom id generating function can be provided as argument upon DisjointSet class instantiation.

Usage

Dsforest exposes a chainable API, that can be utilized through a simple and minimal syntax, allowing you to combine methods effectively.

Usage examples can be also found at the test directory.

'use strict';
const {DisjointSet} = require('dsforest');

const colors = {
  red: {
    name: 'red',
    hex: '#FF0000'
  },
  black: {
    name: 'black',
    hex: '#000000'
  },
  white: {
    name: 'white',
    hex: '#FFFFFF'
  },
  green: {
    name: 'green',
    hex: '#00FF00'
  },
  blue: {
    name: 'blue',
    hex: '#0000FF'
  },
  yellow: {
    name: 'yellow',
    hex: '#FFFF00'
  }
};

// Custom function expression to map each color element to exactly one unique id
const idAccessorFn = color => color.name;

const set = new DisjointSet(idAccessorFn);
//=> DisjointSet { parent: { } }

set.isEmpty();
//=> true

set
  .makeSet(colors.red)
  .makeSet(colors.black)
  .makeSet(colors.white)
  .makeSet(colors.green)
  .makeSet(colors.blue);
//=> DisjointSet { parent: {
//  red: { name: 'red', hex: '#FF0000' },
//  black: { name: 'black', hex: '#000000' },
//  white: { name: 'white', hex: '#FFFFFF' },
//  green: { name: 'green', hex: '#00FF00' },
//  blue: { name: 'blue', hex: '#0000FF' } }
// }

set.forestElements;
//=> 5

set.forestSets;
//=> 5

set.areConnected(colors.red, colors.black);
//=> false

set.union(colors.red, colors.white);
//=> DisjointSet { parent: {
//  red: { name: 'red', hex: '#FF0000' },
//  black: { name: 'black', hex: '#000000' },
//  white: { name: 'red', hex: '#FF0000' },
//  green: { name: 'green', hex: '#00FF00' },
//  blue: { name: 'blue', hex: '#0000FF' } }
// }

set.findSet(colors.white);
//=> { name: 'red', hex: '#FF0000' }

set.isSingleton(colors.black);
//=> true

set.setSize(colors.white);
//=> 2

set.union(colors.white, colors.blue);
//=> DisjointSet { parent: {
//  red: { name: 'red', hex: '#FF0000' },
//  black: { name: 'black', hex: '#000000' },
//  white: { name: 'red', hex: '#FF0000' },
//  green: { name: 'green', hex: '#00FF00' },
//  blue: { name: 'red', hex: '#FF0000' } }
// }

set.isRepresentative(colors.blue);
//=> false

set.includes(colors.yellow);
//=> false

set.findSet(colors.yellow);
//=> undefined

set.union(colors.black, colors.green);
//=> DisjointSet { parent: {
//  red: { name: 'red', hex: '#FF0000' },
//  black: { name: 'black', hex: '#000000' },
//  white: { name: 'red', hex: '#FF0000' },
//  green: { name: 'black', hex: '#000000' },
//  blue: { name: 'red', hex: '#FF0000' } }
// }

set.forestSets;
//=> 2

set.getId(colors.green);
//=> green

API

set.forestElements

Returns the number of elements residing in the disjoint-sets of the forest.

const {DisjointSet} = require('dsforest');

const set = new DisjointSet();

set
  .makeSet(10)
  .makeSet(20)
  .makeSet(30);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30 } }
set.forestElements;
//=> 3

set.forestSets

Returns the number of disjoint-sets in the forest.

const {DisjointSet} = require('dsforest');

const set = new DisjointSet();

set
  .makeSet(10)
  .makeSet(20)
  .makeSet(30);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30 } }
set.forestSets;
//=> 3
set.union(10, 20);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 10,
//   30: 30 } }
set.forestSets;
//=> 2

set.areConnected(x, y)

Determines whether the two given elements x and y belong to the same disjoint-set/tree, returning true or false as appropriate.

x

Disjoint-set forest element.

y

Disjoint-set forest element.

const {DisjointSet} = require('dsforest');

const set = new DisjointSet();

set
  .makeSet(10)
  .makeSet(20)
  .makeSet(30);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30 } }
set.areConnected(10, 20);
//=> false
set.union(10, 20);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 10,
//   30: 30 } }
set.areConnected(10, 20);
//=> true

set.clear()

Mutates the disjoint-set forest by removing all residing elements and sets, returning it completely empty.

const {DisjointSet} = require('dsforest');

const set = new DisjointSet();

set
  .makeSet(10)
  .makeSet(20)
  .makeSet(30)
  .makeSet(40);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30
//   40: 40 } }
set.forestElements;
//=> 4
set.forestSets;
//=> 4
set.union(10, 40);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30
//   40: 10 } }
set.forestElements;
//=> 4
set.forestSets;
//=> 3
set.clear();
//=> DisjointSet { parent: { } }
set.forestElements;
//=> 0
set.forestSets;
//=> 0

set.findSet(value)

Returns the representative element/root of the disjoint-set/tree that element value is part of. If the given element is not part of any set/tree, then undefined is returned. The method uses the path compression heuristic which mutates the parent pointer of each element, part of the find-path, by making it point directly to the set-representative/root.

value

Disjoint-set forest element.

const {DisjointSet} = require('dsforest');

const set = new DisjointSet();

set
  .makeSet(10)
  .makeSet(20)
  .makeSet(30)
  .makeSet(40);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30
//   40: 40 } }
set.findSet(10);
//=> 10
set.union(40, 10);
//=> DisjointSet { parent: {
//   10: 40,
//   20: 20,
//   30: 30
//   40: 10 } }
set.findSet(10);
//=> 40
set.findSet(50);
//=> undefined

set.getId(value)

Returns the unique id that the given value element corresponds to and which is used as a key to point to the parent element of value in the parent associative array. If the given value element is not part of any disjoint-set, then undefined is returned.

value

Disjoint-set forest element.

const {DisjointSet} = require('dsforest');

const set = new DisjointSet();

set
  .makeSet(10)
  .makeSet(20)
  .makeSet(30)
  .makeSet(40);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30
//   40: 40 } }
set.getId(10);
//=> 10
set.getId(50);
//=> undefined

set.includes(value)

Determines whether the given element value is part of a set, returning true or false as appropriate.

value

Disjoint-set forest element.

const {DisjointSet} = require('dsforest');

const set = new DisjointSet();

set
  .makeSet(10)
  .makeSet(20)
  .makeSet(30)
  .makeSet(40);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30
//   40: 40 } }
set.includes(100);
//=> false
set.includes(20);
//=> true

set.isEmpty()

Determines whether the disjoint-set forest is empty, returning true or false as appropriate.

const {DisjointSet} = require('dsforest');

const set = new DisjointSet();

set.isEmpty();
//=> true

set
  .makeSet(10)
  .makeSet(20)
  .makeSet(30)
  .makeSet(40);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30
//   40: 40 } }
set.isEmpty();
//=> false

set.isRepresentative(value)

Determines whether the given element value is the representative element/root of its disjoint-set/tree, returning true or false as appropriate.

value

Disjoint-set forest element.

const {DisjointSet} = require('dsforest');

const set = new DisjointSet();

set
  .makeSet(10)
  .makeSet(20)
  .makeSet(30)
  .makeSet(40);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30
//   40: 40 } }
set.isRepresentative(50);
//=> false
set.isRepresentative(40);
//=> true
set.union(10, 40);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30
//   40: 10 } }
set.isRepresentative(40);
//=> false
set.isRepresentative(10);
//=> true

set.isSingleton(value)

Determines whether the given element value is part of a singleton set/tree, a set of size 1 with value as its representative element/root, returning true or false as appropriate.

value

Disjoint-set forest element.

const {DisjointSet} = require('dsforest');

const set = new DisjointSet();

set
  .makeSet(10)
  .makeSet(20)
  .makeSet(30)
  .makeSet(40);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30
//   40: 40 } }
set.isSingleton(50);
//=> false
set.isSingleton(40);
//=> true
set.union(10, 40);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30
//   40: 10 } }
set.isSingleton(40);
//=> false

set.makeSet(value)

Mutates the disjoint-set forest by creating a new singleton set/tree containing the element value with a rank of 0, a parent pointer to itself indicating that the element is the representative member/root of its own set and a corresponding unique id. Returns the disjoint-set forest itself.

value

Disjoint-set forest element.

const {DisjointSet} = require('dsforest');

const set = new DisjointSet();

set.makeSet(10);
//=> DisjointSet { parent: { 10: 10 } }
set.forestElements;
//=> 1
set
  .makeSet(20)
  .makeSet(30)
  .makeSet(40);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30
//   40: 40 } }
set.forestElements;
//=> 4

set.setSize(value)

Returns the size of the disjoint-set that the given element value is a member of. If the value is not part of any set, then 0 is returned.

value

Disjoint-set forest element.

const {DisjointSet} = require('dsforest');

const set = new DisjointSet();

set
  .makeSet(10)
  .makeSet(20)
  .makeSet(30)
  .makeSet(40);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30
//   40: 40 } }
set.setSize(10);
//=> 1
set.setSize(50);
//=> 0
set.union(10, 40);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30
//   40: 10 } }
set.setSize(40);
//=> 2

set.union(n)

Determines the set representatives/roots of the given x and y elements, and if they are distinct, the sets/trees that x and y belong to are merged by updating the parent pointer of the set-representative/root with the lower rank to point to the set-representative/root with the higher rank. If instead, the representatives/roots have equal ranks, the set-representative/root of element x is chosen by default as the parent of the y element representative/root, while its rank is also incremented. Returns the disjoint-set forest itself.

x

Disjoint-set forest element.

y

Disjoint-set forest element.

const {DisjointSet} = require('dsforest');

const set = new DisjointSet();

set
  .makeSet(10)
  .makeSet(20)
  .makeSet(30)
  .makeSet(40)
  .makeSet(50);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 20,
//   30: 30
//   40: 40
//   50: 50 } }
set.union(10, 20);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 10,
//   30: 30
//   40: 40
//   50: 50 } }
set.findSet(20);
//=> 10
set.isRepresentative(10);
//=> true
set.union(40, 30);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 10,
//   30: 40
//   40: 40
//   50: 50 } }
set.findSet(30);
//=> 40
set.isRepresentative(40);
//=> true
set.union(30, 50);
//=> DisjointSet { parent: {
//   10: 10,
//   20: 10,
//   30: 40
//   40: 40
//   50: 40 } }
set.findSet(50);
//=> 40
set.setSize(30);
//=> 3
set.setSize(20);
//=> 2
set.union(20, 50);
//=> DisjointSet { parent: {
//   10: 40,
//   20: 40,
//   30: 40
//   40: 40
//   50: 40 } }
set.findSet(10);
//=> 40
set.forestSets;
//=> 1

Development

For more info on how to contribute to the project, please read the contributing guidelines.

Related

Team

License

MIT