The wrapper has to be built by enabling any one of the mentioned curve as a feature.
To build for BLS-381 curve, use
cargo build --no-default-features --features bls381
For BN-254 curve, use
cargo build --no-default-features --features bn254
Similarly, to build for ed25519, use
cargo build --no-default-features --features ed25519
To run tests for secp256k1, use
cargo test --no-default-features --features secp256k1
To use it as dependency crate, use the name of the curve as a feature. eg. for BLS12-381 curve, use
[dependencies.amcl_wrapper]
version = "0.4.0"
default-features = false
features = ["bls381"]
Note that only one curve can be used at a time so the code only works with one feature.
There are tests for various operations which print the time taken to do those ops. They are prefixed with timing
*[]:
To run them use
cargo test --release --no-default-features --features <curve name> -- --nocapture timing
Create some random field elements or group elements and do some basic additions/subtraction/multiplication
let a = FieldElement::random();
let b = FieldElement::random();
let neg_b = -b;
assert_ne!(b, neg_b);
let neg_neg_b = -neg_b;
assert_eq!(b, neg_neg_b);
assert_eq!(b+neg_b, FieldElement::zero());
let c = a + b;
let d = a - b;
let e = a * b;
let mut sum = FieldElement::zero();
sum += c;
sum += d;
// Compute inverse of element
let n = a.invert();
// Faster but constant time computation of inverse of several elements. `inverses` will be a vector of inverses of elements and `pr` will be the product of all inverses.
let (inverses, pr) = FieldElement::batch_invert(vec![a, b, c, d].as_slice());
// Compute a width 5 NAF.
let a_wnaf = a.to_wnaf(5);
// G1 is the elliptic curve sub-group over the prime field
let x = G1::random();
let y = G1::random();
let neg_y = -y;
assert_ne!(y, neg_y);
let neg_neg_y = -neg_y;
assert_eq!(y, neg_neg_y);
assert_eq!(y+neg_y, G1::identity());
let z = x + y;
let z1 = x - y;
let mut sum_1 = G1::identity();
sum_1 += z;
sum_1 += z1;
// G2 is the elliptic curve sub-group over the prime extension field
let x = G2::random();
let y = G2::random();
let neg_y = -y;
assert_ne!(y, neg_y);
let neg_neg_y = -neg_y;
assert_eq!(y, neg_neg_y);
assert_eq!(y+neg_y, G2::identity());
let z = x + y;
let z1 = x - y;
let mut sum_1 = G2::identity();
sum_1 += z;
sum_1 += z1;
// To check that G1 or G2 have correct order, i.e. the curve order
let x = G1::random();
assert!(x.has_correct_order());
let y = G2::random();
assert!(y.has_correct_order());
Mutating versions of the above operations like addition/subtraction/negation/inversion are present but have to be called as methods like b.negate()
Scalar multiplication
let a = FieldElement::random();
let g = G1::generator(); // the group's generator
// constant time scalar multiplication
let m = g * a;
// variable time scalar multiplication using wNAF
let n = g.scalar_mul_variable_time(&a);
Map an arbitrary size message to a field element or group element by hashing the message internally.
let msg = "Some message";
let a = FieldElement::from_msg_hash(msg.as_bytes());
let b = G1::from_msg_hash(msg.as_bytes());
Create vectors of field elements and do some operations
// creates a vector of size 10 with all elements as 0
let mut a = FieldElementVector::new(10);
// Add 2 more elements to the above vector
a.push(FieldElement::random());
a.push(FieldElement::random());
a[0]; // 0th element of above vector
a[1]; // 1st element of above vector
a.len(); // length of vector
a.sum(); // sum of elements of vector
// Return a Vandermonde vector of a given field element, i.e. given element `k` and size `n`, return vector as `vec![1, k, k^2, k^3, ... k^n-1]`
let k = FieldElement::random();
let van_vec = FieldElementVector::new_vandermonde_vector(&k, 5);
// creates a vector of size 10 with randomly generated field elements
let rands: Vec<_> = (0..10).map(|_| FieldElement::random()).collect();
// an alternative way of creating vector of size 10 of random field elements
let rands_1 = FieldElementVector::random(10);
// Compute new vector as sum of 2 vectors. Requires vectors to be of equal length.
let sum_vec = rands.plus(&rands_1);
// Compute new vector as difference of 2 vectors. Requires vectors to be of equal length.
let diff_vec = rands.minus(&rands_1);
// Return the scaled vector of the given vector by a field element `n`, i.e. multiply each element of the vector by that field element
let n = FieldElement::random();
let scaled_vec = rands.scaled_by(&n);
// Scale the vector itself
let mut rands_2 = rands_1.clone();
rands_2.scale(&n);
// Compute inner product of 2 vectors. Requires vectors to be of equal length.
let ip = rands.inner_product(&rands_1);
// Compute Hadamard product of 2 vectors. Requires vectors to be of equal length.
let hp = rands.hadamard_product(&rands_1);
Create vectors of group elements and do some operations
// creates a vector of size 10 with all elements as 0
let mut a = G1Vector::new(10);
// Add 2 more elements to the above vector
a.push(G1::random());
a.push(G1::random());
// creating vector of size 10 of random group elements
let rands: Vec<_> = (0..10).map(|_| G1::random()).collect();
let rands_1 = G1Vector::random(10);
// Compute new vector as sum of 2 vectors. Requires vectors to be of equal length.
let sum_vec = rands.plus(&rands_1);
// Compute new vector as difference of 2 vectors. Requires vectors to be of equal length.
let diff_vec = rands.minus(&rands_1);
// Compute inner product of a vector of group elements with a vector of field elements.
// eg. given a vector of group elements and field elements, G and F respectively, compute G[0]*F[0] + G[1]*F[1] + G[2]*F[2] + .. G[n-1]*F[n-1]
// requires vectors to be of same length
let g = G1Vector::random(10);
let f = FieldElementVector::random(10);
// Uses constant time multi-scalar multiplication `multi_scalar_mul_const_time` underneath.
let ip = g.inner_product_const_time(&f);
// Uses variable time multi-scalar multiplication `multi_scalar_mul_var_time` underneath.
let ip1 = g.inner_product_var_time(&f);
// If lookup tables are already constructed, `multi_scalar_mul_const_time_with_precomputation_done` and `multi_scalar_mul_var_time_with_precomputation_done` can be used for constant and variable time multi-scalar multiplication
Pairing support. Ate pairing is supported with target group GT
let g1 = G1::random();
let g2 = G2::random();
// compute reduced ate pairing for 2 elements, i.e. e(g1, g2)
let gt = GT::ate_pairing(&g1, &g2);
// multiply target group elements
let h1 = G1::random();
let h2 = G2::random();
let ht = GT::ate_pairing(&h1, &h2);
let m = GT::mul(>, &ht);
// compute reduced ate pairing for 4 elements, i.e. e(g1, g2) * e (h1, h2)
let p = GT::ate_2_pairing(&g1, &g2, &h1, &h2);
// compute reduced ate multi-pairing. Takes a vector of tuples of group elements G1 and G2 as Vec<(&G1, &G2)>
let e = GT::ate_multi_pairing(tuple_vec);
// Raise target group element to field element (GT^f)
let r = FieldElement::random();
let p = gt.pow(&r);
Serialization
// Convert to and from bytes
let x = G1::random();
let y = G2::random();
// Get byte representation of uncompressed point by passing false to `to_bytes`
let un_compressed_bytes_for_G1: Vec<u8> = x.to_bytes(false);
let un_compressed_bytes_for_G2: Vec<u8> = y.to_bytes(false);
// Get byte representation of compressed point by passing true to `to_bytes`
let compressed_bytes_for_G1: Vec<u8> = x.to_bytes(true);
let compressed_bytes_for_G2: Vec<u8> = y.to_bytes(true);
// Use `write_to_slice` or `write_to_slice_unchecked` to avoid creating a `Vec` by passing a mutable slice
// Use `from_bytes` to get the group element back from compressed or uncompressed bytes
let x_recovered = G1::from_bytes(&un_compressed_bytes_for_G1)?;
let y_recovered = G2::from_bytes(&un_compressed_bytes_for_G2)?;
// Or
let x_recovered = G1::from_bytes(&compressed_bytes_for_G1)?;
let y_recovered = G2::from_bytes(&compressed_bytes_for_G2)?;
// Convert to and from hex.
let hex_repr = a.to_hex();
let a_recon = FieldElement::from_hex(hex_repr).unwrap(); // Constant time conversion
// Convert to and from hex.
let hex_repr = x.to_hex();
let x_recon = G1::from_hex(hex_repr).unwrap(); // Constant time conversion
// Convert to and from hex.
let hex_repr = y.to_hex();
let y_recon = G2::from_hex(hex_repr).unwrap(); // Constant time conversion
Hash to curve point
Use hash_to_curve
of G1 or G2 to hash arbitrary bytes to subgroup of the curve according to the hash to curve point
IETF standard https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/?include_text=1
// `dst` is the domain separation tag and `msg` is the message (bytes) to hash
let g1 = G1::hash_to_curve(&dst, &msg);
// Similarly for G2
let g2 = G2::hash_to_curve(&dst, &msg);
Check the documentation of hash_to_curve
for more details
Univariate polynomials
// Create a univariate zero polynomial of degree `d`, i.e. the polynomial will be 0 + 0*x + 0*x^2 + 0*x^3 + ... + 0*x^d
let poly = UnivarPolynomial::new(d);
assert!(poly.is_zero());
// Create a polynomial from field elements as coefficients, the following polynomial will be c_0 + c_1*x + c_2*x^2 + c_3*x^3 + ... + c_d*x^d
let coeffs: Vec<FieldElement> = vec![c_0, c_1, ... coefficients for smaller to higher degrees ..., c_d];
let poly1 = UnivarPolynomial(FieldElementVector::from(coeffs));
// Create a polynomial of degree `d` with random coefficients
let poly2 = UnivarPolynomial::random(d);
// Create a polynomial from its roots
let poly3 = UnivarPolynomial::new_with_roots(roots);
// Create a polynomial by passing the coefficients to a macro
let poly4 = univar_polynomial!(
FieldElement::one(),
FieldElement::zero(),
FieldElement::from(87u64),
-FieldElement::one(),
FieldElement::from(300u64)
);
// A polynomial can be evaluated at a field element `v`
let res: FieldElement = poly1.eval(v);
// Polynomials can be added, subtracted, multiplied or divided to give new polynomials
let sum = UnivarPolynomial::sum(&poly1, &poly2);
// Or use operator overloading
let sum = &poly1 + &poly2;
let diff = UnivarPolynomial::difference(&poly1, &poly2);
// Or use operator overloading
let diff = &poly1 - &poly2;
let product = UnivarPolynomial::multiply(&poly1, &poly2);
// Or use operator overloading
let product = &poly1 * &poly2;
// Dividing polynomials: poly1 / poly2
let (quotient, rem) = UnivarPolynomial::long_division(&poly1, &poly2);