fwknop implements an authorization scheme known as Single Packet Authorization (SPA) for strong service concealment. SPA requires only a single packet which is encrypted, non-replayable, and authenticated via an HMAC in order to communicate desired access to a service that is hidden behind a firewall in a default-drop filtering stance. The main application of SPA is to use a firewall to drop all attempts to connect to services such as SSH in order to make the exploitation of vulnerabilities (both 0-day and unpatched code) more difficult. Because there are no open ports, any service that is concealed by SPA naturally cannot be scanned for with Nmap. The fwknop project supports four different firewalls: iptables, firewalld, PF, and ipfw across Linux, OpenBSD, FreeBSD, and Mac OS X. There is also support for custom scripts so that fwknop can be made to support other infrastructure such as ipset or nftables.
SPA is essentially next generation Port Knocking (PK), but solves many of the limitations exhibited by PK while retaining its core benefits. PK limitations include a general difficulty in protecting against replay attacks, asymmetric ciphers and HMAC schemes are not usually possible to reliably support, and it is trivially easy to mount a DoS attack against a PK server just by spoofing an additional packet into a PK sequence as it traverses the network (thereby convincing the PK server that the client doesn't know the proper sequence). All of these shortcomings are solved by SPA. At the same time, SPA hides services behind a default-drop firewall policy, acquires SPA data passively (usually via libpcap or other means), and implements standard cryptographic operations for SPA packet authentication and encryption/decryption.
SPA packets generated by fwknop leverage HMAC for authenticated encryption in
the encrypt-then-authenticate model. Although the usage of an HMAC is currently
optional (enabled via the --use-hmac
command line switch), it is highly
recommended for three reasons:
The final reason above is why an HMAC should still be used even when SPA
packets are encrypted with GnuPG due to the fact that SPA data is not sent
through libgpgme functions unless the HMAC checks out first. GnuPG and libgpgme
are relatively complex bodies of code, and therefore limiting the ability of a
potential attacker to interact with this code through an HMAC operation helps
to maintain a stronger security stance. Generating an HMAC for SPA
communications requires a dedicated key in addition to the normal encryption
key, and both can be generated with the --key-gen
option.
fwknop encrypts SPA packets either with the Rijndael block cipher or via GnuPG
and associated asymmetric cipher. If the symmetric encryption method is chosen,
then as usual the encryption key is shared between the client and server (see
the /etc/fwknop/access.conf
file for details). The actual encryption key used
for Rijndael encryption is generated via the standard PBKDF1 key derivation
algorithm, and CBC mode is set. If the GnuPG method is chosen, then the
encryption keys are derived from GnuPG key rings.
People who use Single Packet Authorization (SPA) or its security-challenged cousin Port Knocking (PK) usually access SSHD running on the same system where the SPA/PK software is deployed. That is, a firewall running on a host has a default-drop policy against all incoming SSH connections so that SSHD cannot be scanned, but a SPA daemon reconfigures the firewall to temporarily grant access to a passively authenticated SPA client:
"Basic SPA usage to access SSHD"
fwknop supports the above, but also goes much further and makes robust usage of NAT (for iptables/firewalld firewalls). After all, important firewalls are usually gateways between networks as opposed to just being deployed on standalone hosts. NAT is commonly used on such firewalls (at least for IPv4 communications) to provide Internet access to internal networks that are on RFC 1918 address space, and also to allow external hosts access to services hosted on internal systems.
Because fwknop integrates with NAT, SPA can be leveraged to access internal services through the firewall by users on the external Internet. Although this has plenty of applications on modern traditional networks, it also allows fwknop to support cloud computing environments such as Amazon's AWS:
"SPA usage on Amazon AWS cloud environments"
The official cross-platform fwknop client user interface fwknop-gui (download, github) is developed by Jonathan Bennett. Most major client-side SPA modes are supported including NAT requests, HMAC and Rijndael keys (GnuPG is not yet supported), fwknoprc stanza saving, and more. Currently fwknop-gui runs on Linux, Mac OS X, and Windows - here is a screenshot from OS X: "fwknop-gui on Mac OS X" Similarly, an updated Android client is available as well.
A comprehensive tutorial on fwknop can be found here:
http://www.cipherdyne.org/fwknop/docs/fwknop-tutorial.html
The following is a complete list of features supported by the fwknop project:
tcpdump -w <file>
), from the iptables ULOG pcap writer, or
directly via a UDP socket in --udp-server
mode.The fwknop project is released as open source software under the terms of the GNU General Public License (GPL v2) or (at your option) any later version. The latest release can be found at http://www.cipherdyne.org/fwknop/
This README file describes the present state of the fwknop project as of the
2.5 release made in July, 2013. At present, we have an implementation of the
Firewall Knock Operator library; libfko
, as well as the fwknop client and
server applications. The library provides the API and back-end functionality
for managing the Single Packet Authorization (SPA) data that the other fwknop
components employ. It also can be used by other programs that need SPA
functionality (see the perl
directory for the FKO perl module as an example,
and there are python bindings as well in the python
directory).
If you are upgrading from an older version of fwknop (and this includes the original perl implementation as well), then you will want to read the following link to ensure a smooth transition to fwknop-2.5 or later:
http://www.cipherdyne.org/fwknop/docs/fwknop-tutorial.html#backwards-compatibility
This distribution uses GNU autoconf for setting up the build. Please see
the INSTALL
file for the general basics on using autoconf.
There are some "configure" options that are specific to fwknop. They are (extracted from ./configure --help):
--disable-client Do not build the fwknop client component. The
default is to build the client.
--disable-server Do not build the fwknop server component. The
default is to build the server.
--with-gpgme support for gpg encryption using libgpgme
[default=check]
--with-gpgme-prefix=PFX prefix where GPGME is installed (optional)
--with-gpg=/path/to/gpg Specify path to the gpg executable that gpgme will
use [default=check path]
--with-firewalld=/path/to/firewalld
Specify path to the firewalld executable
[default=check path]
--with-iptables=/path/to/iptables
Specify path to the iptables executable
[default=check path]
--with-ipfw=/path/to/ipfw
Specify path to the ipfw executable [default=check
path]
--with-pf=/path/to/pfctl
Specify path to the pf executable [default=check
path]
--with-ipf=/path/to/ipf Specify path to the ipf executable [default=check
path]
Examples:
./configure --disable-client --with-firewalld=/bin/firewall-cmd
./configure --disable-client --with-iptables=/sbin/iptables --with-firewalld=no
For those of you who are currently using the Perl version and plan to migrate to this version, there are some things to be aware of:
Not all of the features and functionality of the Perl-based fwknop were ported to this implementation. We felt it important to keep the C version as lean and lightweight as possible. Most of the omitted feature/functions (like email alerts) can be accomplished through other means (i.e. use an external script to monitor log files and alert based on appropriate log messages).
There are some differences in the fwknop configuration and access file directives and values. Some of these are fairly subtle. You should pay careful attention to the documentation and comments in those files.
If you are pulling this distribution from git, you should run the
autogen.sh
script to generate the autoconf files. If you get errors about
missing directories or files, try running autogen.sh
again. After that
you can run the autoreconf -i
when you want to regenerate the configuration.
If, for some reason, autoreconf does not work for you, the autogen.sh
script should suffice.
The fwknop and fwknopd man page nroff sources are included in their respective directories (client and server). These nroff files are derived from the asciidoc sources in the 'docs' directory. See the README in docs for details.